Answer: the ability to be dissolved, especially in water.
Explanation: I think the answer you've picked is right
Hope this helps
This question is describing the following chemical reaction at equilibrium:

And provides the relative amounts of both A and B at 25 °C and 75 °C, this means the equilibrium expressions and equilibrium constants can be written as:

Thus, by recalling the Van't Hoff's equation, we can write:

Hence, we solve for the enthalpy change as follows:

Finally, we plug in the numbers to obtain:
![\Delta H=\frac{-8.314\frac{J}{mol*K} *ln(0.25/9)}{[\frac{1}{(75+273.15)K} -\frac{1}{(25+273.15)K} ] } \\\\\\\Delta H=4,785.1\frac{J}{mol}](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Cfrac%7B-8.314%5Cfrac%7BJ%7D%7Bmol%2AK%7D%20%2Aln%280.25%2F9%29%7D%7B%5B%5Cfrac%7B1%7D%7B%2875%2B273.15%29K%7D%20-%5Cfrac%7B1%7D%7B%2825%2B273.15%29K%7D%20%5D%20%7D%20%5C%5C%5C%5C%5C%5C%5CDelta%20H%3D4%2C785.1%5Cfrac%7BJ%7D%7Bmol%7D)
Learn more:
Answer:
n = 12.18 moles
Explanation:
Given that,
The volume of a canister, V = 1 L
The temperature of the canister, T = 100 K
Pressure, P = 100 atm
We need to find the number of moles of gas. Let there are n number of moles. We know that,
PV = nRT
Where
R is gas constant, R = 0.0821 L*atm/mol*K

Hence, there are 12.18 moles of gas.
The atomic structure of the atom contains 9 positively charged particles (protons) and 10 neutrally charged particles (neutrons) in the center of the atom in a clump called the nucleus. Those 9 negatively charged particles (electrons) are moving around outside of the nucleus.
There are 10 neutral charges, because the mass of 19 comes from the number of neutral charges plus the number of positive charges.
To calculate the number of neutral charges, subtract the positive charges from the mass (19 - 9), and you get the number of neutral charges (10).
Answer:
The general formula for the carboxylic acids is C nH 2n+1COOH (where n is the number of carbon atoms in the molecule, minus 1).
Explanation:
<em>Hope </em><em>it </em><em>helps </em><em>u </em>
FOLLOW MY ACCOUNT PLS PLS