Electrons, everything is pretty much based around the likeliness of electrons to be swapped or shared between atoms
Answer:
A decrease in the total volume of the reaction vessel (T constant)
Explanation:
- Le Châtelier's principle predicts that the moles of H2 in the reaction container will increase with a decrease in the total volume of the reaction vessel.
- <em><u>According to the Le Chatelier's principle, when a chnage is a applied to a system at equilibrium, then the equilibrium will shift in a way that counteracts the effect causing it.</u></em>
- In this case, a decrease in volume means there is an increase in pressure, therefore the equilibrium will shift towards the side with the fewer number of moles of gas.
What question there’s no question on here
Answer:
Q = 0.061 = Kc
Explanation:
Step 1: Data given
Temperature = 500 °C
Kc=0.061
1.14 mol/L N2
5.52 mol/L H2
3.42 mol/L NH3
Step 2: Calculate Q
Q=[products]/[reactants]=[NH3]²/ [N2][H2]³
If Qc=Kc then the reaction is at equilibrium.
If Qc<Kc then the reaction will shift right to reach equilibrium.
If Qc>Kc then the reaction will shift left to reach equilibrium.
Q = (3.42)² / (1.14 * 5.52³)
Q = 11.6964/191.744
Q = 0.061
Q = Kc the reaction is at equilibrium.