Answer:
2) 3)
Explanation:
1) Expressing the Division as the summation of the quotient and the remainder
for
118, knowing it is originally a decimal form:
118:2=59 +(0), 59/2 =29 + 1, 29/2=14+1, 14/2=7+0, 7/2=3+1, 3/2=1+1, 1/2=0+1
2)
Similarly, we'll start the process with the absolute value of -49 since we want the positive value of it. Then let's start the successive divisions till zero.
|-49|=49
49:2=24+1, 24:2=12+0,12:2=6+0,6:2=3+0,3:2=1+1,1:2=0+1
100011
3)
The first step on that is dividing by 16, and then dividing their quotient again by 16, so on and adding their remainders. Simply put:
Answer:
A)
- Q ( kw ) for vapor = -1258.05 kw
- Q ( kw ) for liquid = -1146.3 kw
B )
- Q ( kj ) for vapor = -1258.05 kJ
- Q ( KJ ) for liquid = - 1146.3 KJ
Explanation:
Given data :
45.00 % mole of methane
55.00 % of ethane
attached below is a detailed solution
A) calculate - Q(kw)
- Q ( kw ) for vapor = -1258.05 kw
- Q ( kw ) for liquid = -1146.3 kw
B ) calculate - Q ( KJ )
- Q ( kj ) for vapor = -1258.05 kJ
- Q ( KJ ) for liquid = - 1146.3 KJ
since combustion takes place in a constant-volume batch reactor
Answer:
λ^3 = 4.37
Explanation:
first let us to calculate the average density of the alloy
for simplicity of calculation assume a 100g alloy
80g --> Ag
20g --> Pd
ρ_avg= 100/(20/ρ_Pd+80/ρ_avg)
= 100*10^-3/(20/11.9*10^6+80/10.44*10^6)
= 10744.62 kg/m^3
now Ag forms FCC and Pd is the impurity in one unit cell there is 4 atoms of Ag since Pd is the impurity we can not how many atom of Pd in one unit cell let us calculate
total no of unit cell in 100g of allow = 80 g/4*107.87*1.66*10^-27
= 1.12*10^23 unit cells
mass of Pd in 1 unit cell = 20/1.12*10^23
Now,
ρ_avg= mass of unit cell/volume of unit cell
ρ_avg= (4*107.87*1.66*10^-27+20/1.12*10^23)/λ^3
λ^3 = 4.37