Answer : The correct option is, (C) 17 m/s
Explanation :
Formula used :
where,
K.E = kinetic energy = 6.8 J
m = mass of object = 46 g = 0.046 kg (1 kg = 1000 g)
v = velocity
Now put all the given values in the above formula, we get:
Therefore, the ball's velocity be as it leaves the cannon is, 17 m/s
Answer:
220 A
Explanation:
The magnetic force on the floating rod due to the rod held close to the ground is F = BI₁L where B = magnetic field due to rod held close the ground = μ₀I₂/2πd where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, I₂ = current in rod close to ground and d = distance between both rods = 11 mm = 0.011 m. Also, I₁ = current in floating rod and L = length of rod = 1.1 m.
So, F = BI₁L
F = (μ₀I₂/2πd)I₁L
F = μ₀I₁I₂L/2πd
Given that the current in the rods are the same, I₁ = I₂ = I
So,
F = μ₀I²L/2πd
Now, the magnetic force on the floating rod equals its weight , W = mg where m = mass of rod = 0.10kg and g = acceleration due to gravity = 9.8 m/s²
So, F = W
μ₀I²L/2πd = mg
making I subject of the formula, we have
I² = 2πdmg/μ₀L
I = √(2πdmg/μ₀L)
substituting the values of the variables into the equation, we have
I = √(2π × 0.011 m × 0.1 kg × 9.8 m/s²/[4π × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2 × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2.2 × 10⁻⁷ H])
I = √(0.0049 × 10⁷kgm²/s²H)
I = √(0.049 × 10⁶kgm²/s²H)
I = 0.22 × 10³ A
I = 220 A
Answer:
1. 12 V
2a. R₁ = 4 Ω
2b. V₁ = 4 V
3a. A = 1.5 A
3b. R₂ = 4 Ω
4. Diagram is not complete
Explanation:
1. Determination of V
Current (I) = 2 A
Resistor (R) = 6 Ω
Voltage (V) =?
V = IR
V = 2 × 6
V = 12 V
2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:
Voltage (V) = 12 V
Current (I) = 1 A
Equivalent resistance (R) =?
V = IR
12 = 1 × R
R = 12 Ω
a. Determination of R₁
Equivalent resistance (R) = 12 Ω
Resistor 2 (R₂) = 8 Ω
Resistor 1 (R₁) =?
R = R₁ + R₂ (series arrangement)
12 = R₁ + 8
Collect like terms
12 – 8 =
4 = R₁
R₁ = 4 Ω
b. Determination of V₁
Current (I) = 1 A
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 1 × 4
V₁ = 4 V
3a. Determination of the current.
Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) = 6 V
Current (I) =?
V₁ = IR₁
6 = 4 × I
Divide both side by 4
I = 6 / 4
I = 1.5 A
Thus, the ammeter (A) reading is 1.5 A
b. Determination of R₂
We'll begin by calculating the voltage cross R₂. This can be obtained as follow:
Total voltage (V) = 12 V
Voltage 1 (V₁) = 6 V
Voltage 2 (V₂) =?
V = V₁ + V₂ (series arrangement)
12 = 6 + V₂
Collect like terms
12 – 6 = V₂
6 = V₂
V₂ = 6 V
Finally, we shall determine R₂. This can be obtained as follow:
Voltage 2 (V₂) = 6 V
Current (I) = 1.5 A
Resistor 2 (R₂) =?
V₂ = IR₂
6 = 1.5 × R₂
Divide both side by 1.5
R₂ = 6 / 1.5
R₂ = 4 Ω
4. The diagram is not complete
Answer:
<u>Explanation:</u>
A linear equation is of the form: y = mx + b where
- m is the slope
- b is the y-intercept (where it crosses the y-axis)
x + 4y = 16
4y = -x + 16
The y-intercept (b) = 4
Next, find the slope given point (4, 5) and b = 4