I think it is aluminum oxide
Reduction reactions are those reactions that reduce the oxidation number of a substance. Hence, the product side of the reaction must contain excess electrons. The opposite is true for oxidation reactions. When you want to determine the potential difference expressed in volts between the cathode and anode, the equation would be: E,reduction - E,oxidation.
To cancel out the electrons, the e- in the reactions must be in opposite sides. To do this, you reverse the equation with the negative E0, then replacing it with the opposite sign.
Pb(s) --> Pb2+ +2e- E0 = +0.13 V
Ag+ + e- ---> Ag E0 = +0.80 V
Adding up the E0's would yield an overall electric cell potential of +0.93 V.
Answer:
Explanation:
Your answer should be in the attached pdf
Danger, or some people look at it as love
Hey there!
C₅H₅ + Fe → Fe(C₅H₅)₂
Put a coefficient of 2 in front of C₅H₅ on the left side because there is a subscript of 2 after C₅H₅ in parenthesis on the right.
2C₅H₅ + Fe → Fe(C₅H₅)₂
Fe (iron) is already balanced since there is one on each side, so we don't need to change anything for that.
This is a synthesis reaction because two reactants, C₅H₅ and Fe, are yielding a single product, Fe(C₅H₅)₂.
Hope this helps!