The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
Answer:
The answer is 0.83 seconds.
Explanation:
The formula of free fall is following:

Where g=9.8 m/s^2 and t=2 seconds, the rock takes:

19.6 meters. This is the half distance of the cliff. The whole distance is 39.2 meters. So it takes:

2.83 second to fall down completely. The rock takes the second half of the cliff in 0.83 seconds
Answer:
1.67 A
Explanation:
Given that,
→ Power (P) = 400 W
→ Potential difference (V) = 240 V
→ Current (I) = ?
The amount of current drawn will be,
→ P = V × I
→ I = P/V
→ I = 400/240
→ I = 1.66666666667
→ [ I = 1.67 A ]
Hence, the current drawn 1.67 A.
Answer:
The initial velocity was U=22.14m/s
Explanation:
Step one :
Applying the third equation of motion
v² = u²+ 2as
Where v= Final velocity
U =initial velocity
a= acceleration due to gravity
S= distance or displacement
Step two :
V= 0
a= 9.81m/s²
S=25m
U=?
Step three :
Substituting into the equation we have
0²=U²+2*9.81*25
0=U²+490.5
U²=-490.5
U=√490.5
U=22.14m/s