Answer:
While lifting two object the machine needs the different momentum for different mass object.
Explanation:
- Momentum is the quantity of motion contained in an object. Usually it is measured by the product of mass and velocity.
- Momentum of first mass = 2 kg × 2 m/sec = 4 kg m/sec
- Momentum of second mass = 4 kg × 3 m/sec = 12 kg m/sec
- So the machine requires higher mass in motion for second object ( i.e. momentum) than the first one while lifting.
It states that the total entropy of an isolated system can never decrease over time
Have you ever looked up the density of a substance ? You ought to try it. Go ahead. Pick a substance, then go online or open up an actual book and find its density. You will never see any particular volume mentioned along with the density . . . because it doesn't matter. The whole idea of density is that it describes the substance, no matter how much or how little you have of it. The density of a tiny drop of water under a microscope is the same as the density of a supertanker-ful of water.
Answer:

Explanation:
<u>Conservation of Momentum
</u>
The total momentum of a system of two particles is

Where m1,m2,v1, and v2 are the respective masses and velocities of the particles at a given time. Then, the two particles collide and change their velocities to v1' and v2'. The final momentum is now

The momentum is conserved if no external forces are acting on the system, thus

Let's put some numbers in the problem and say



120=120
It means that when the particles collide, the first mass returns at 6 m/s and the second continues in the same direction at 28 m/s