Answer:
Zero
Explanation:
The work done by a force on an object is given by:

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and the displacement of the object
In this situation, the force is the force of gravity acting on the satellite. This force always points towards the centre of the trajectory, so it is always perpendicular to the direction of motion of the satellite (since the orbit is circular), so
and
. Therefore, the work done by gravity is also zero.
Answer:
Yes, because the wrench is moving at the same speed as the sailboat.
The main difference is that a person on the ground would see the wrench moving diagonally, while a person on the boat would see the wrench falling straight down,
This difference in paths lead to the relativistic change in lengths.
a) 120 s
b) v = 0.052R [m/s]
Explanation:
a)
The period of a revolution in a simple harmonic motion is the time taken for the object in motion to complete one cycle (in this case, the time taken to complete one revolution).
The graph of the problem is missing, find it in attachment.
To find the period of revolution of the book, we have to find the time between two consecutive points of the graph that have exactly the same shape, which correspond to two points in which the book is located at the same position.
The first point we take is t = 0, when the position of the book is x = 0.
Then, the next point with same shape is at t = 120 s, where the book returns at x = 0 m.
Therefore, the period is
T = 120 s - 0 s = 120 s
b)
The tangential speed of the book is given by the ratio between the distance covered during one revolution, which is the perimeter of the wheel, and the time taken, which is the period.
The perimeter of the wheel is:

where R is the radius of the wheel.
The period of revolution is:

Therefore, the tangential speed of the book is:

It would be B, the weather patterns outside.