Answer:
the ratio of the bubble’s volume at the top to its volume at the bottom is 1.019
Explanation:
given information
h = 0.2 m
= 1.01 x
Pa


=
+ ρgh, ρ = 1000 kg/
= 1.01 x
Pa + (1000 x 9.8 x 0.2) = 1,0296 x
Pa
=
=
Pa
thus,
/
= 1.019
Answer: (Sorry, but I don't know how to calculate mass)
1. 15 N
2. 0.4921
(feet per second squared)
4. 150 N
5. 8.202 feet per second squared
Answer:
The lose of thermal energy is, Q = 22500 J
Explanation:
Given data,
The mass of aluminium block, m = 1.0 kg
The initial temperature of block, T = 50° C
The final temperature of the block, T' = 25° C
The change in temperature, ΔT = 50° C - 25° C
= 25° C
The specific heat capacity of aluminium, c = 900 J/kg°C
The formula for thermal energy,
<em>Q = mcΔT</em>
= 1.0 x 900 x 25
= 22500 J
Hence, the lose of thermal energy is, Q = 22500 J
All of the orbitals in a given subshell have the same value of the "<span>magnetic and principal" quantum number
Hope this helps!</span>
The charge present determines a force to be attractive or repulsive.
The charges acquired by two bodies determines the Force as Attractive Or Repulsive.
Electric Force applied due to Electrical charges is same in magnitude but opposite in direction. This corresponds this phenomenon equivalent to the Newton's Third Law.
Examples of the experiments and observations:
- On combing hair through a comb and then keeping it close to small pieces of paper shows attraction of paper pieces towards the comb.
This occurs due to the Electric charges present in the comb that induces charge in paper pieces leading to their attraction.
- In both Gravitational Force and Coulomb force, the force remains inversely proportional to the square of the distance following the Inverse Square Law being the Central Force system. This only differs by the fact that in Gravitational Force, masses are used and in Coulomb force, charges are used.
The more the distance between the charges, the less is the Electric Force.
The lesser the distance between the charges, the more is the Electric Force.
If both the objects are charged the same i.e. either positive or negative then the Force is Repulsive and if the charges are Oppositely charged then the force is attractive.
Hence, the charge present determines a force to be attractive or repulsive.
Learn more about Coulomb Force here, brainly.com/question/15451944
#SPJ4