THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
Answer:
a) 1 x 10^-11 mol/L
b) 1 x 10^-6 mol/L
c) 1 x 10^-5 fewer H+ ions
Explanation
pH stands for Power of Hydrogen, the more acidic a substance is, the more H+ ions it has rendering the substance acidic. a pH of 1 means the concentration of H+ ions is 1 x 10^-1. A pH of 7 means the concentration of H+ ions is 1 x 10^-7 and so on.
10^-11 has 10^-5 more H+ ions than 10^-6
Hope this helps :)
Answer;
A) Stage 1: Chlorophyll captures light energy. Stage 2: Light energy is converted to chemical energy.
Explanation;
-Photosynthesis is the process by which green plants use energy from the sun, water and carbon dioxide to make organic compounds such as simple sugars together with release of oxygen.
-The process occurs in tow stages; light-dependent stage and light independent stage. During light dependent stage, chlorophyll absorbs sunlight and uses it to split water molecules into hydrogen ions and oxygen atoms. In the light independent stage carbon (iv) dioxide is fixed and the result is organic compound; the light energy is converted to chemical energy.
Answer:The solar wind creates the magnetosphere as it pushes against and shapes Earth's magnetic field.
Explanation:
Answer:
3.43×10¹ mol
Explanation:
Given data:
Initial number of moles = 12.4 mol
Initial volume = 122.8 L
Final number of moles = ?
Final volume = 339.2 L
Solution:
The number of moles and volume are directly proportional to each other at same temperature and pressure.
V₁/n₁ = V₂/n₂
122.8 L/ 12.4 mol = 339.2 L / n₂
n₂ = 339.2 L× 12.4 mol / 122.8 L
n₂ = 4206.08 L.mol /122.8 L
n₂ = 34.3mol
In scientific notation:
3.43×10¹ mol