Answer:
Molality = 0.0862 mole/kg
Explanation:
Molality = (number of moles of solute)/(mass of solvent in kg)
Number of moles of solute = (mass of Creatinine in the blood sample)/(Molar mass of Creatinine)
To obtain the mass of creatinine in 10 mL of blood. We're told that 1 mg of Creatinine is contained in 1 decilitre of blood.
1 decilitre = 100 mL
1 mg of Creatinine is contained in 100 mL of blood
x mg of Creatinine is contained in 10 mL of blood.
x = (1×10/100) = 0.1 mg = 0.0001 g
Molar mass of Creatinine (C₄H₇N₃O) = 113.12 g/mol
Number of moles of Creatinine in the 10 mL blood sample = (0.0001/113.12) = 0.000000884 moles
Mass of 10 mL of blood = density × volume = 1.025 × 10 = 10.25 mg = 0.01025 g = 0.00001025 kg
Molality of normal creatinine level in a 10.0-ml blood sample = (0.000000884/0.00001025)
Molality = 0.0862 moles of Creatinine per kg of blood.
Hope this Helps!!!
Answer is: 73.52 kJ<span> of energy is required to vaporize butane.
</span>m(C₄H₁₀) = 185 g.
n(C₄H₁₀) = m(C₄H₁₀) ÷ M(C₄H₁₀).
n(C₄H₁₀) = 185 g ÷ 58.12 g/mol.
n(C₄H₁₀) = 3.18 mol; amount of butane.
Hvap = 23.1 kJ/mol; <span>the heat of vaporization for butane.
</span>Q = Hvap · n(C₄H₁₀).
Q = 23.1 kJ/mol · 3.18 mol; energy.
Q = 73.52 kJ.
Answer:
Solids have a set shape and can't flow since their particles can only vibrate in a specific direction. They are unable to travel from one location to another.
Explanation:
Answer:
0.0185 min⁻¹
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
20.0 % of the initial values is left which means that 0.20 of
is left. So,
= 0.20
t = 87.0 min
<u>k = 0.0185 min⁻¹</u>