Answer:
See explanation
Explanation:
Let us look at the reaction again;
Cr2O7 2- (aq) + H2O(l)⇄ 2CrO4 2-(aq) + 2H^+(aq)
When we add sodium hydroxide to the system as shown, the hydroxide ion removes the hydrogen ion thereby leaving a large concentration CrO4^2-(aq) in the system this causes the solution to turn green(equilibrium position shifts to the right).
The net ionic equation is;
OH^-(aq) + H^+(aq) ----> H2O(l)
The reaction;
OH^-(aq) + H^+(aq) ----> H2O(l) is exothermic hence, if the temperature of the system is increased, the equilibrium position will shift towards the left hand side and the solution turns orange.
You need a metal and a non metal for an ionic bond
Ah , a cup of hot chocolate is alot of chocolate. Im gonna drool ; )
Well , heat flows from an area of high temperature to an area of low temperature. Here , hot chocolate has the high temp , and the surrounding has a room temp. So , the heat from the hot chocolate will dissipate into the surroundings and create a thermal equilibrium. So youre right.
* Mole ratio:
C2H4 + 3 O2= 2 CO2 + 2 H2O
1 mole C2H4 --------------- 2 moles H2O
8.00 moles C2H4 ---------- ?
8.00 x 2 / 1 => 16 moles of H2O
Therefore:
1 mole --------- 22.4 L at ( STP)
16 moles ------- ?
16 x 22.4 / 1 => 358.4 L
hope this helps!
N<span>icolaus </span>Copernicus<span> was a Polish astronomer who put forth the theory that the Sun is at rest near the center of the Universe, and that the Earth, spinning on its axis once daily, revolves annually around the Sun. This is called the heliocentric, or Sun-centered, system.</span>