Answer:
7.6 g
Explanation:
"Well lagged" means insulated, so there's no heat transfer between the calorimeter and the surroundings.
The heat gained by the copper, water, and ice = the heat lost by the steam
Heat gained by the copper:
q = mCΔT
q = (120 g) (0.40 J/g/K) (40°C − 0°C)
q = 1920 J
Heat gained by the water:
q = mCΔT
q = (70 g) (4.2 J/g/K) (40°C − 0°C)
q = 11760 J
Heat gained by the ice:
q = mL + mCΔT
q = (10 g) (320 J/g) + (10 g) (4.2 J/g/K) (40°C − 0°C)
q = 4880 J
Heat lost by the steam:
q = mL + mCΔT
q = m (2200 J/g) + m (4.2 J/g/K) (100°C − 40°C)
q = 2452 J/g m
Plugging the values into the equation:
1920 J + 11760 J + 4880 J = 2452 J/g m
18560 J = 2452 J/g m
m = 7.6 g
Answer: a=-2.4525 m/s^2
d=s=190.3 m
Explanation:The only force that is stopping the car and causing deceleration is the frictional force Fr
Fr = 25% of weight
W=mg
W=1750*9.81
W=17167.5
Hence

Frictional force is negative as it acts in opposite direction
According to newton second law of motion
F=ma
hence


given
u= 110 km/h
u=110*1000/3600
u=30.55 m/s
to get t we know that final velocity v=0

When you add more water to the balloon, it makes it heavier. Therefore it would weigh the balloon down ( increasing mass) and increasing the energy to plummet down. So the answer is B.
When you drop an object on the moon, it falls to the ground.
But it only falls about 1/6 as fast as it falls on Earth.
The law of reflection states that the angle of incidence is equal to the angle of reflection. Furthermore, the law of reflection states that the incident ray, the reflected ray and the normal all lie in the same plane.
hope this helps :)