I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s². The solutions would be completely different if the same scenario were to play out in other places.
A ball is thrown upward with a speed of 40 m/s. Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.
So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.
Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip. After another 4.08 seconds, the ball has returned to the height of the hand which flung it. In total, the ball is in the air for <em>8.16 seconds</em> up and down.
D. between radio waves and microwaves
Only if a force acts upon it, it can move.
Answer:
24k
Explanation:
We multiply by 200V by 24
Answer: gravitational potential energy is converted into kinetic energy
Explanation:
When the diver stands on the platform, at 20 m above the surface of the water, he has some gravitational potential energy, which is given by
![E=mgh](https://tex.z-dn.net/?f=E%3Dmgh)
where m is the man's mass, g is the gravitational acceleration and h is the height above the water. As he jumps, the gravitational potential energy starts decreasing, because its height h above the water decreases, and he acquires kinetic energy, which is given by
![K=\frac{1}{2}mv^2](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
where v is the speed of the diver, which is increasing. When he touches the water, all the initial gravitational potential energy has been converted into kinetic energy.