It is helpful to study the light that comes off stars because C. The light from a star gives hints of what elements make up a star.
Answer:

Explanation:
The velocity v₁ can be calculated with the kinematic formula:

Since the object is initially at rest, v₁ becomes:

Where g is the acceleration due to gravity. Now, the velocity v₂ can be calculated with the same formula, but now the initial velocity is v₁:

Substituting v₁ in this expression and solving for v₂, we get:

Now, dividing v₂ over v₁, we get the expression:

It means that v₂ is √2 times v₁.
Answer:
Explanation:
According to <u>Coulomb's Law:</u>
<em>"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them".</em>
<em />
Mathematically this law is written as:
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Solving:
Answer:
An object at rest stays at rest as long as unbalanced forces act on it.
Explanation:
Inertia can be defined as the tendency of an object or a body to continue in its state of motion or remain at rest unless acted upon by an external force.
In physics, Sir Isaac Newton's First Law of Motion is known as Law of Inertia and it states that, an object or a physical body in motion will continue in its state of motion at continuous velocity (the same speed and direction) or, if at rest, will remain at rest unless acted upon by an external force.
The inertia of a physical object such as a truck is greatly dependent or influenced by its mass; the higher the quantity of matter in a truck, the greater will be its tendency to continuously remain at rest.
Hence, the situation which is contrary to Newton’s first law of motion is that, an object at rest stays at rest as long as unbalanced forces act on it.
According to Newton’s first law of motion, an object at rest stays at rest as long as unbalanced forces do not act on it.
Answer:
Tension, T = 0.0115 N
Explanation:
Given that,
Mass of the plastic ball, m = 1.1 g
Length of the string, l = 56 cm
A charged rod brought near the ball exerts a horizontal electrical force F on it, causing the ball to swing out to a 21.0 degree angle and remain there. According to attached figure :

T is tension in the string

So, the tension in the string is 0.0115 N.