1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
9

The answer would be ?

Physics
1 answer:
Cerrena [4.2K]3 years ago
4 0

Answer:

D. demand; increased

Explanation:

Demand is how much people want it.

You might be interested in
A rotating space station is said to create "artificial gravity" - a loosely-defined term used for an acceleration that would be
FrozenT [24]

Answer:

\omega=0.31\frac{rad}{s}

Explanation:

The artificial gravity generated by the rotating space station is the same centripetal acceleration due to the rotational motion of the station, which is given by:

a_c=\frac{v^2}{r}(1)

Here, r is the radius and v is the tangential speed, which is given by:

v=\omega r(2)

Here \omega is the angular velocity, we replace (2) in (1):

a_c=\frac{(\omega r)^2}{r}\\\\a_c=\omega^2r

Recall that r=\frac{d}{2}=\frac{200m}{2}=100m.

Solving for \omega:

\omega=\sqrt{\frac{a_c}{r}}\\\omega=\sqrt{\frac{9.8\frac{m}{s^2}}{100m}}\\\omega=0.31\frac{rad}{s}

3 0
3 years ago
Determine the total amount of heat, in joules, required to completely vaporize a 50.0-gram sample of h2o(?) at its boiling point
Tanzania [10]
In order to calculate the amount of energy required, we must first check the latent heat of vaporization of water from literature. The latent heat of vaporization of any substance is the amount of energy required per unit mass to convert that substance from a solid to a liquid. For water this is 2,260 J/g. We now use the formula:
Energy = mass * latent heat
Q = 50 * 2,260
Q = 113,000 J

113,000 Joules of heat energy are required.
3 0
3 years ago
The midpoint M of a guitar string is pulled a distance d = 1.7 mm from equilibrium and released. Point M is observed to undergo
nlexa [21]

Answer:

ω = 380π rad/s

Explanation:

The formula for the angular frequency is the oscillation frequency f (hertz) multiplied by 2π

ω = 2πf

then

ω = 2π(190)

ω = 380π rad/s

8 0
2 years ago
On the Moon the acceleration due to gravity is about one sixth that on Earth. If a golfer on the Moon imparted the same initial
swat32

Explanation:

We know that that the range of the ball on the earth

R_{earth}=\frac{v_o^2sin2\theta}{g_{earth}}

therefore, range of the ball on moon

R_{moon}=\frac{v_o^2sin2\theta}{g_{moon}}

R_{moon}=\frac{v_o^2sin2\theta}{g_{earth}/12}

therefore,

R_{moon}=6R_{earth}

Therefore, the range of ball will be 6 times on the moon than that on earth

6 0
2 years ago
At the intersection of Texas Avenue and University Drive,
Zielflug [23.3K]

Answer:

  • The initial speed of the truck is 21.93 m/s, and the initial speed of the car is 19.524 m/s  

Explanation:

We can use conservation of momentum to find the initial velocities.

Taking the unit vector \hat{i} pointing north and \hat{j} pointing east, the final velocity will be

\vec{V}_f = 16.0 \frac{m}{s} \ ( \ cos(24.0 \°) \ , \ sin (24.0 \°) \ )

\vec{V}_f = ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )

The final linear momentum will be:

\vec{P}_f = (m_{car}+ m_{truck}) * V_f

\vec{P}_f = (950 \ kg \ + 1900 \ kg \ ) *  ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )

\vec{P}_f = (2.850 \ kg \ ) *  ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )

\vec{P}_f = ( \ 41,658.45 \frac{ kg \ m}{s} \ , \ 18,547.8 \frac{kg \ m}{s} \ )

As there are not external forces, the total linear momentum must be constant.

So:

\vec{P}_0= \vec{P}_f

As initially the car is travelling east, and the truck is travelling north, the initial linear momentum must be

\vec{P}_0= ( m_{truck} * v_{truck}, m_{car}* v_{car} ) 

so:

 \vec{P}_0= \vec{P}_f 

( m_{truck} * v_{truck}, m_{car}* v_{car} ) = ( \ 41,658.45 \frac{ kg \ m}{s} \ , \ 18,547.8 \frac{kg \ m}{s} \ )  

so

\left \{ {{m_{truck} \ v_{truck} = 41,658.45 \frac{ kg \ m}{s}  } \atop {m_{car} \ v_{car}=18,547.8 \frac{kg \ m}{s} }} \right.

So, for the truck

m_{truck} \ v_{truck} = 41,658.45 \frac{ kg \ m}{s}

1900 \ kg \ v_{truck} = 41,658.45 \frac{ kg \ m}{s}

v_{truck} = \frac{41,658.45 \frac{ kg \ m}{s}}{1900 \ kg}

v_{truck} = \frac{41,658.45 \frac{ kg \ m}{s}}{1900 \ kg}

v_{truck} = 21.93 \frac{m}{s}

And, for the car

950 \ kg \ v_{car}=18,547.8 \frac{kg \ m}{s}

v_{car}=\frac{18,547.8 \frac{kg \ m}{s}}{950 \ kg}

v_{car}=19.524 \frac{m}{s}

5 0
2 years ago
Other questions:
  • Naphthalene, C 10 H 8 , melts at 80.2°C. If the vapour pressure of the liquid is 1.3 kPa at 85.8°C and 5.3 kPa at 119.3°C, use t
    15·1 answer
  • An apple is pushed across a table with a velocity of 3.74 m/s rolls too far and falls 0.89
    6·1 answer
  • The majority of pelagic sediments are of which type?
    14·1 answer
  • Compare and contrast formation of with the formation of mgcl2
    9·1 answer
  • Finally, the switch on the electromagnet is reopened. The magnitude of the external magnetic flux through the wire loop ______ (
    9·1 answer
  • You arrive in my class 45 seconds after leaving math which is 85 meters away. How fast did you travel?
    13·1 answer
  • Which federal agency helps foreign governments with international conservation efforts?
    12·2 answers
  • - A ball is thrown at a wall 50 meters away. It takes the ball 5 seconds to get to
    5·1 answer
  • A 7.3 kg bowling ball would require how much force if you use a broom to
    10·1 answer
  • The breakdown of rocks by chemical action of air and water is called
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!