Complete Question
Apollo 14 astronaut Alan B. Shepard Jr. used an improvised six-iron to strike two golf balls while on the Fra Mauro region of the moon’s surface, making what some consider the longest golf drive in history. Assume one of the golf balls was struck with initial velocity v0 = 32.75 m/s at an angle θ = 32° above the horizontal. The gravitational acceleration on the moon’s surface is approximately 1/6 that on the earth’s surface. Use a Cartesian coordinate system with the origin at the ball's initial position.
Randomized Variables
vo 32.75 m/s
theta 32 degrees
What horizontal distance, R in meters, did this golf ball travel before returning to the lunar surface?
Answer:
The horizontal distance is
Explanation:
From the question we are told that
The initial velocity is 
The angle is 
The gravitational acceleration of the moon is 
Generally the distance traveled is mathematically represented as

=> 
=>
Answer:
so initial momentum is 0.22kgm/s
Explanation:
m1=0.20kg
m2=0.30kg
initial velocity of m1=u1=0.50m/s
initial velocity of m2=u2=0.40m/s
total momentum of the system before collision
Pi=m1u1+m2u2
Pi=0.20kg×0.50m/s+0.30kg×0.40m/s
Pi=0.1kgm/s+0.12kgm/s
Pi=0.22kgm/s
The correct option is: (c) They remain in Phase
Two waves <span>are </span>coherent if the following three conditions are met:
1) They<span> have </span><span>the same frequency.
2) They have the same waveform.
3) They remain in phase.
Hence the correct option is C.</span>
Answer:
D
Explanation:
the formula is F=mgh
so now you can write it like
m= 4×50=200
200×1.5×10=30000