Some metals having unpaired electrons contain a strong magnetic response, i.e, they can be magnetized by an external magnetic field.
Given that,
Mass of a tribble, m = 2.5 kg
Radius, r = 1.4 m
The force on the tribble from the bucket does not exceed 10 times its weight.
To find,
The maximum tangential speed.
Solution,
The force acting on the tribble is equal to the centripetal force.
F = 10mg
The formula for the centripetal force is given by :

v is maximum tangential speed

So, the maximum tangential speed is 11.7 m/s.
Answer:
Temperature of water leaving the radiator = 160°F
Explanation:
Heat released = (ṁcΔT)
Heat released = 20000 btu/hr = 5861.42 W
ṁ = mass flowrate = density × volumetric flow rate
Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³
ṁ = 1000 × 0.000126 = 0.126 kg/s
c = specific heat capacity for water = 4200 J/kg.K
H = ṁcΔT = 5861.42
ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C
And in change in temperature terms,
10°C= 18°F
11.08°C = 11.08 × 18/10 = 20°F
ΔT = T₁ - T₂
20 = 180 - T₂
T₂ = 160°F
Answer:
F = M a where M is acceleration and a is acceleration
a = x / s^2 = distance / time squared
The Newton is derived because mass, distance, and time are all fundamental units One would have to look at the fundamental requirements for these definitions, but they can all be repeated in a laboratory.
So the Newton is determined from these fundamental units and since the Joule equals Newton * Distance it is also derived from the fundamental units.
If one has the three fundamental units then one can derive the Joule and Newton.