The work done occurs only in the direction the block was moved - horizontally. Work is given by:
W = F(h) * d
Where F(h) is the force applied in that direction (horizontal) and d is the distance in that direction. In this case, F(h) is the horizontal component of the applied force, F(app). However, the question doesn't give us F(app), so we need to find it some other way.
Since the block is moving at a constant speed, we know the horizontal forces must be balanced so that the net force is 0. This means that F(h) must be exactly balanced by the friction force, f. We can express F(h) as a function of F(app):
F(h) = F(app)cos(23)
Friction is a little trickier - since the block is being PUSHED into the ground a bit by the vertical component of the applied force, F(v), the normal force, N, is actually a bit more than mg:
N = mg + F(v) = mg + F(app)sin(23)
Now we can get down to business and solve for F(app) - as mentioned above:
F(h) = f
F(h) = uN
F(h) = u * (mg + F(v))
F(app)cos(23) = 0.20 * (33 * 9.8 + F(app)sin(23))
F(app) = 76.8
Now that we have F(app), we can find the exact value of F(h):
F(h) = F(app)cos(23)
F(h) = 76.8cos(23)
F(h) = 70.7
And now that we have F(h), we can find W:
W = F(h) * d
W = 70.7 * 6.1
W = 431.3
Therefore, the work done by the worker's force is 431.3 J. This also represents the increase in thermal energy of the block-floor system.
In physical science, there are two types of quantity: scalar and vector. While scalar quantities only include the magnitude, vector quantities include both the magnitude and the direction. Displacement is an example of vector quantities. Therefore, it includes magnitude and direction.
Answer: The working and answer can be viewed from the screenshots below. Thanks
If a circuit has a current of 3.6 Amps and resistance of 5 Ohms, then Ohm's law can be used to find the voltage. Ohm's law states that the voltage is equal to the product of current and resistance (V=IR). In this case the voltage is equal to 3.6 Amps x 5 Ohms = 18.0 Volts. The law can also be used with the rearranged equation to obtain current or resistance.