The bulbs will produce lesser light than their capacity, In short they will be dimmer because the the energy will get divided in the number of bulbs.
V=(40km/hr)(hr/3600s)(1000000mm/km)
v=11111.1mm/s
v=d/t
d=vt
d=(11111.1mm/s)(5s)
d=55555mm
d=5.56x10^4mm
Recall this gas law:
= 
P₁ and P₂ are the initial and final pressures.
V₁ and V₂ are the initial and final volumes.
T₁ and T₂ are the initial and final temperatures.
Given values:
P₁ = 475kPa
V₁ = 4m³, V₂ = 6.5m³
T₁ = 290K, T₂ = 277K
Substitute the terms in the equation with the given values and solve for Pf:

<h3>P₂ = 279.2kPa</h3>
Given data:
* The mass of the baseball is 0.31 kg.
* The length of the string is 0.51 m.
* The maximum tension in the string is 7.5 N.
Solution:
The centripetal force acting on the ball at the top of the loop is,
![\begin{gathered} T+mg=\frac{mv^2}{L}_{} \\ v^2=\frac{L(T+mg)}{m} \\ v=\sqrt[]{\frac{L(T+mg)}{m}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20T%2Bmg%3D%5Cfrac%7Bmv%5E2%7D%7BL%7D_%7B%7D%20%5C%5C%20v%5E2%3D%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%7D%20%5Cend%7Bgathered%7D)
For the maximum velocity of the ball at the top of the vertical circular motion,
![v_{\max }=\sqrt[]{\frac{L(T_{\max }+mg)}{m}}](https://tex.z-dn.net/?f=v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T_%7B%5Cmax%20%7D%2Bmg%29%7D%7Bm%7D%7D)
where g is the acceleration due to gravity,
Substituting the known values,
![\begin{gathered} v_{\max }=\sqrt[]{\frac{0.51(7.5_{}+0.31\times9.8)}{0.31}} \\ v_{\max }=\sqrt[]{\frac{0.51(10.538)}{0.31}} \\ v_{\max }=\sqrt[]{17.34} \\ v_{\max }=4.16\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%287.5_%7B%7D%2B0.31%5Ctimes9.8%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%2810.538%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B17.34%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D4.16%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
Thus, the maximum speed of the ball at the top of the vertical circular motion is 4.16 meters per second.
Answer:


Explanation:
See attachment for complete work.