Moment of inertia is the inertia of a rotating body with respect to its rotation. So basically it's the object's resistance to a rotational acceleration. This relates to Newton's first law! What does that exactly mean? Let's check out the explanation.
One formula that it is written in is I= mr
Explanation:
As Bill Nye says, "Inertia is a property of matter. Objects that are not moving don't move unless they get pushed or pulled. Moving objects keep moving unless they get pushed or pulled. This feature of objects and materials is what we call inertia."
a quantity expressing a body's tendency to resist angular acceleration, which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation.
In simpler terms Moment of inertia also called "angular mass" (kg. · m2), is the inertia of a rotating body with respect to its rotation. It is a rotating body's resistance to angular acceleration or deceleration, equal to the product of the mass and the square of its perpendicular distance from the axis of rotation.
When standing on the bathroom scale within the moving elevator, there are two forces acting on Henry's mass: Normal force and gravity.
Gravity is always downward, and normal force is perpendicular to the surface on which the mass is located (the bathroom scale), in upward direction.
Normal force, can adopt any value needed to match the acceleration of the mass, according to Newton's 2nd Law.
Gravity (which we call weight near the Earth's surface) can be calculated as follows:
According to Newton's 2nd Law, it must be met the following condition:
As the gravity is larger than normal force, this means that the acceleration is downward, so, we choose this direction as the positive.
Solving for a, we get:
We can find the speed after the first 3.8 s (assuming a is constant), applying the definition of acceleration as the rate of change of velocity:
Now, if during the next 3.8 s, normal force is 930 N (same as the weight), this means that both forces are equal each other, so net force is 0.
According to Newton's 2nd Law, if net force is 0, the object is either or at rest, or moving at a constant speed.
As the elevator was moving, the only choice is that it is moving at a constant speed, the same that it had when the scale was read for the first time, i.e., 4 m/s downward.