Answer:
9.8N
Explanation:
Here we can get gravitational acceleration according to the place where object is placed by bellow equation
g = GM/R²
g - Gravitational Acceleration
G - Gravitational constant (6.67×10-11)
R - Distance ( Radius )
g = 6.67 × 10-11 × 1024 /(6.37×106)²
g = 9.8 m/s²
There for
Weight = Mass × Gravitational acceleration
= 1×9.8
= 9.8 N
There are many principles that are classified under the Gestalt Principles. The Gestalt principles believe that any stimulus can be viewed in a very simple form. According to the given image, I can say that the square represents the Gestalt principle of PROXIMITY. Hope this helps.
Momentum before the hit:
p = mv = 0.01 * 300 + 1 * 0
Momentum after the hit:
p = 0.01 * 150 + 1 * v
Momentum is conserved:
0.01 * 300 = 0.01 * 150 + v
3 = 1.5 + v
v = 1.5
The velocity of the block after the collision is 1.5 m/s.
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:
