Answer:
If one cup falls down then there will be 59 cups left.
Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is

Answer:
The answer is "Option C".
Explanation:
Wedging Freeze is generated by repeated freezing. Freeze wedging occurs, whenever the water is turned into ice as a result of the 9 percent expansion. When it freezes, cracks full of water are forced to separate further. and other options are incorrect, that can be described as follows:
- In option A, It is a state where the element converts into a liquid, that's why it is not correct.
- In option B, It is a reaction in which the bonds of water is divided into particular substance, that's why it is not correct.
- In option D, It is a form of mechanical or physical rock weathering, that's it is not correct.
Answer:
Approximate linear dimension is 2 light years.
Explanation:
Radius of the spiral galaxy r = 62000 LY
Thickness of the galaxy h = 700 LY
Volume of the galaxy = πr²h
= (3.14)(62000)²(700)
= (3.14)(62)²(7)(10)⁸
= 84568×10⁸
=
(LY)³
Since galaxy contains number of stars = 1078 billion stars ≈ 
Now volume covered by each star of the galaxy = 
= 
= 7.839 Light Years
Now the linear dimension across the volume
= 
= 
= 1.99 LY
≈ 2 Light Years
Therefore, approximate linear dimension is 2 light years.
Answer:
0 Newtons
Explanation:
The velocity of the object does not change, it is a constant 54 km/hr. When velocity does not change, acceleration is zero. Using the formula Force = mass x acceleration, we find:
mass = 1200 kg
acceleration = 0
F = (1200)(0) = 0