<u>Answer:</u> The products of the given chemical equation are 
<u>Explanation:</u>
Protonation equation is defined as the equation in which protons get added in the substance.
The chemical equation for the protonation of carbonate ion in the presence of water follows:

By Stoichiometry of the reaction:
1 mole of carbonate ion reacts with 1 mole of water to produce 1 mole of hydrogen carbonate ion and 1 mole of hydroxide ion
Hence, the products of the given chemical equation are 
For the very last question you would first divide 8,900 by 12 and the number you get will be the answer. You should get 741.66
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of
or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.
Answer:
43.05 moles of Al needed to react with 28.7 moles of FeO.
Explanation:
Given data:
Moles of FeO = 28.7 mol
Moles of Al needed to react with FeO = ?
Solution:
Chemical equation:
2Al + 3FeO → 3Fe + Al₂O₃
Now we will compare the moles of Al with FeO.
FeO : Al
2 : 3
28.7 : 3/2×28.7 = 43.05 mol
Thus 43.05 moles of Al needed to react with 28.7 moles of FeO.
Answer:

Explanation:
Assuming that all caculations are at normal pressure and -1.72°C :

Where
is the number of moles of hydrogen
is the mass of hydrogen
is the density of hydrogen