Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer:
1.37cm
Explanation:
It's less than 1.4cm but more than 1.3cm. It's also more than 1.35cm so I guess the best answer would be 1.37cm or round up to 1.4cm
Answer:
v = 1130 cm³
Explanation:
Given data:
Volume of sample = ?
Mass of Al sample = 3.057 Kg (3.057 Kg× 1000g/1 Kg = 3057g)
Density of Al sample = 2.70 g/cm³
Solution:
Formula:
d = m/v
d = density
m = mass
v= volume
by putting values
2.70 g/cm³ = 3057g /v
v = 3057g /2.70 g/cm³
v = 1130 cm³
Explanation:
9.0122 g be Maybe, sorry i don't think so