Activation energy is the minimum amount of energy that the colliding reactant molecules must possess for the formation of products. Lower the activation energy, higher will be chance of formation of products. So activation energy is the minimum energy requirement that has to overcome for the reaction to be completed. Therefore, when in a chemical reaction the reactant molecules do not collide with required activation energy, the collisions will not be fruitful even if they are properly oriented which means that the products will not form.
Hence the correct answer will be B.) no products will be formed
Chemical Reactions and Moles of Reactants and Products
That is, it requires 2 moles of magnesium and 1 mole of oxygen to produce 2 moles of magnesium oxide. If only 1 mole of magnesium was present, it would require 1 ÷ 2 = ½ mole of oxygen gas to produce 2 ÷ 2 = 1 mole magnesium oxide.
I believe its called mitosis. Mitosis is a type of cell division that results in two daughter cells each having the same number and kind of chromosomes as the parent nucleus, typical of ordinary tissue growth. Hope this helps:)
<h3><u>Answer;</u></h3>
The statements that are True are;
- Upon binding a molecule of oxygen, Hb undergoes a conformational change that makes the binding of subsequent O2 molecules easier.
- The conformational change induced in Hb upon binding oxygen is the result of a small movement (0.2 Å) of the iron cation in the center of heme.
- Site-directed mutagenesis studies have indicated that the cooperativity of O2 binding in Hb is attributable to the movement of the F helix in Hb.
<h3><u>Explanation</u>;</h3>
- Hemoglobin is a key pigment in the blood that transports oxygen gas to all the tissues in the body. It is made up of two types of chains; that is two alpha chains and two beta chains.
- in its deoxygenated state hemoglobin has a low affinity for oxygen compared to myoglobin. When oxygen is bound to the first subunit of hemoglobin it leads to subtle changes to the quaternary structure of the protein. This in turn makes it easier for a subsequent molecule of oxygen to bind to the next subunit.
Answer:
The endpoint volume is 50.52 ± 0.14 mL
Explanation:
In a titration always is necessary to subtract the blank volume to the titrant volume to obtain the real volume of the titrant. Thus in this case, the total endpoint volume is the sum of the initial volume delivered and the second volume delivered, minus the blank volume:
V = (49.16±0.06 mL) + (1.69±0.04 mL) - (0.33±0.04 mL)
V = (49.16 + 1.69 - 0.33) ± (0.06+0.04+0.04) mL
V = 50.52 ± 0.14 mL
It is necessary to consider the sum of the errors too.