1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pentagon [3]
3 years ago
15

13. Austin rode his bike 10 m/s for two minutes. How far did he travel? A. 200 meters B. 1200 meters C. 1000 meters D. 20 meters

​
Physics
1 answer:
Semmy [17]3 years ago
5 0

Answer:

B. 1200

Explanation:

60 sec in one min in 2 min there will be 120 sec. 10x120=1200

You might be interested in
a 4kg box is resting on top of a shelf that is 2m high, what is the boxs gravitational potential relative to the floor​
Aloiza [94]

Answer:

80 J

Explanation:

PE = mgh

PE = (4 kg)(9.8 m/s^2)(2 m)

PE = 78.4 J and with sig figs, it would be 80 J

6 0
2 years ago
Read 2 more answers
Two people are trying to pull a 5-kilogram block in opposite directions. The first person pulls to the right with a force of 25
klasskru [66]

TEST TEST TEST TEST TEST TEST TEST

7 0
3 years ago
In which one of the following situations is zero net work done? A) A ball rolls down an inclined plane. B) A physics student str
lidiya [134]

Answer:

Option D

Explanation:

The work done can be given by the mechanical energy used to do work, i.e., Kinetic energy and potential energy provided to do the work.

In all the cases, except option D, the energy provided to do the useful work is not zero and hence work done is not zero.  

In option D, the box is being pulled with constant velocity, making the acceleration zero and thus Kinetic energy of the system is zero. Hence work done in this case is zero.

6 0
3 years ago
Read 2 more answers
Which statement correctly explains scientific theories?
Elan Coil [88]
<span>Scientific theories are tested and proven over time; they are then considered scientific laws.

Sometimes however, they are proven wrong, and so they do not become laws

hope this helps</span>
4 0
3 years ago
Read 2 more answers
A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (h0 = 20.0 cm).
Ede4ka [16]

Answer:

a. The object with the smallest rotational inertia, the thin hoop

b. The object with the smallest rotational inertia, the thin hoop

c.  The rotational speed of the sphere is 55.8 rad/s and Its translational speed is 1.67 m/s

Explanation:

a. Without doing any calculations, decide which object would be spinning the fastest when it gets to the bottom. Explain.

Since the thin has the smallest rotational inertia. This is because, since kinetic energy of a rotating object K = 1/2Iω² where I = rotational inertia and ω = angular speed.

ω = √2K/I

ω ∝ 1/√I

since their kinetic energy is the same, so, the thin hoop which has the smallest rotational inertia spins fastest at the bottom.

b. Again, without doing any calculations, decide which object would get to the bottom first.

Since the acceleration of a rolling object a = gsinФ/(1 + I/MR²), and all three objects have the same kinetic energy, the object with the smallest rotational inertia has the largest acceleration.

This is because a ∝ 1/(1 + I/MR²) and the object with the smallest rotational inertia  has the smallest ratio for I/MR² and conversely small 1 + I/MR² and thus largest acceleration.

So, the object with the smallest rotational inertia gets to the bottom first.

c. Assuming all objects are rolling without slipping, have a mass of 2.00 kg and a radius of 3.00 cm, find the rotational and translational speed at the bottom of the incline of any one of these three objects.

We know the kinetic energy of a rolling object K = 1/2Iω²  + 1/2mv² where I = rotational inertia and ω = angular speed, m = mass and v = velocity of center of mass = rω where r = radius of object

The kinetic energy K = potential energy lost = mgh where h = 20.0 cm = 0.20 m and g = acceleration due to gravity = 9.8 m/s²

So, mgh =  1/2Iω²  + 1/2mv² =  1/2Iω²  + 1/2mr²ω²

Let I = moment of inertia of sphere = 2mr²/5 where r = radius of sphere = 3.00 cm = 0.03 m and m = mass of sphere = 2.00 kg

So, mgh = 1/2Iω²  + 1/2mr²ω²

mgh = 1/2(2mr²/5 )ω²  + 1/2mr²ω²

mgh = mr²ω²/5  + 1/2mr²ω²

mgh = 7mr²ω²/10

gh = 7r²ω²/10

ω² = 10gh/7r²

ω = √(10gh/7) ÷ r

substituting the values of the variables, we have

ω = √(10 × 9.8 m/s² × 0.20 m/7) ÷ 0.03 m

= 1.673 m/s ÷ 0.03 m

= 55.77 rad/s

≅ 55.8 rad/s

So, its rotational speed is 55.8 rad/s

Its translational speed v = rω

= 0.03 m × 55.8 rad/s

= 1.67 m/s

So, its rotational speed is of the sphere is 55.8 rad/s and Its translational speed is 1.67 m/s

6 0
3 years ago
Other questions:
  • A stone is thrown from the top of a building with an initial velocity of 20 m/s downward. The top of the building is 60 m above
    5·1 answer
  • Which compound is the strongest acid?
    5·2 answers
  • The charge on the square plates of a parallel-plate capacitor is Q. The potential across the plates is maintained with constant
    12·1 answer
  • Electric force and magnetic force are the only forces that can both do what? *
    14·1 answer
  • What is the independent and dependent variable?
    14·2 answers
  • The proportionality constant of the graph (y to x) is
    5·1 answer
  • the sun transfers heat to earth through ___ this method of heat transfer is evidence that ___ is not necessary for heat to move
    12·1 answer
  • Help me please please?
    6·2 answers
  • If a seismic wave has a period of 0.0202s, find the frequency of the wave.
    9·1 answer
  • Two 2.0-mm diameter beads, c and d, are 12mm mm apart, measured between their centers. bead c has mass 1.0 g and charge 2.5nc nc
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!