Answer:
Heating this gas to 55 °C will raise its volume to 6.87 liters.
Assumption: this gas is ideal.
Explanation:
By Charles's Law, under constant pressure the volume
of an ideal gas is proportional to its absolute temperature
(the one in degrees Kelvins.)
Alternatively, consider the ideal gas law:
.
is the number of moles of particles in this gas.
should be constant as long as the container does not leak.
is the ideal gas constant.
is the pressure on the gas. The question states that the pressure on this gas is constant.
Therefore the volume of the gas is proportional to its absolute temperature.
Either way,
.
.
For the gas in this question:
- Initial volume:
.
Convert the two temperatures to degrees Kelvins:
- Initial temperature:
. - Final temperature:
.
Apply Charles's Law:
.
<span>Mutation. Either exchanging a Purine with another Purine, Pyrimidin with another Pyrimidin, or completely exchanging a Purine with a Pyrimidin or vice versa. Point- or Frameshift-Mutation.</span>
Answer: D arts
Explanation: The left part of your brain does logic, science, language, and mathematics, the right part of your brain does creativity and arts.
Answer:
10.5g
Explanation:
First, let us calculate the number of mole of NaHCO3 present in the solution. This is illustrated below:
Volume = 250mL = 250/1000 = 0.25L
Molarity = 0.5M
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 0.5 x 0.25
Mole = 0.125 mole
Now, we shall be converting 0.125 mole of NaHCO3 to grams to obtain the desired result. This can be achieved by doing the following:
Molar Mass of NaHCO3 = 23 + 1 + 12 +(16x3) = 23 + 1 +12 +48 = 84g/mol
Number of mole of NaHCO3 = 0.125 mole
Mass of NaHCO3 =?
Mass = number of mole x molar Mass
Mass of NaHCO3 = 0.125 x 84
Mass of NaHCO3 = 10.5g
Therefore, 10.5g of NaHCO3 is needed.
Answer:
29.85°C
Explanation:
0°K is absolute zero. That is is same as -273.15°C.
To find C, subtract 273.15 from the temperature in °K.
303K - 273.15°C = <em><u>29.85°C</u></em>