Answer:
P(final) is 2.4 times P(initial).
Explanation:
Here we can assume that the cylinder did not break and it's volume and number of moles of gas present in the cylinder remains constant.
Given the temperature increases by a factor of 2.4. Let us assume that the initial temperature be
and the final temperature be
.
Given that 
Now we know the ideal gas equation is PV=nRT
here V=constant , n=constant , R=gas constant(which is constant).





Answer:
You need (B) Two substances in direct contact with one another to have conduction.
I hope this helped at all.
Answer:
R1 + R2 = R = 12 for resistors in series - so R1 = R2 if they are identical
2 R1 = 12 and R1 = R2 = 6 ohms
1 / R = 1 / R1 + 1 / R2 for resistors in parallel
R = R1 * R2 / (R1 + R2) = 6 * 6 / (6 + 6) = 3
The equivalent resistance would be 3 ohms if connected in parallel
Answer:
There is a loss of fluid in the container of 0.475L
Explanation:
To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.
The formula that describes this thermal expansion process is given by:

Where,
Change in volume
Initial Volume
Change in temperature
coefficient of volume expansion (Coefficient of copper and of the liquid for this case)
There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,

Where,
= Change in the volume of liquid
= Change in the volume of copper
Then replacing with the previous equation we have:


Our values are given as,
Thermal expansion coefficient for copper and the liquid to 20°C is




Replacing we have that,



Therefore there is a loss of fluid in the container of 0.475L