1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alja [10]
3 years ago
9

The magnetic force on a wire 274 cm long is . If electrons move through the wire in 1.90 s, what is the magnitude of magnetic fi

eld that is perpendicular to the wire?
Physics
1 answer:
kozerog [31]3 years ago
3 0

Answer:

Matter & Energy

Math Review

Kinematics  

Defining Motion

Graphing Motion

Kinematic Equations

Free Fall

Projectile Motion

Relative Velocity

Dynamics

Newton's 1st Law

Free Body Diagrams

Newton's 2nd Law

Static Equilibrium

Newton's 3rd Law

Friction

Ramps and Inclines

Atwood Machines

Momentum

Impulse & Momentum

Conservation Laws

Types of Collisions

Center of Mass

UCM & Gravity

Uniform Circular Motion

Gravity

Kepler's Laws

Rotational Motion  

Rotational Kinematics

Torque

Angular Momentum

Rotational KE

Work, Energy & Power

Work

Hooke's Law

Power

Energy

Conservation of Energy

Fluid Mechanics  

Density

Pressure

Buoyancy

Pascal's Principle

Fluid Continuity

Bernoulli's Principle

Thermal Physics  

Temperature

Thermal Expansion

Heat

Phase Changes

Ideal Gas Law

Thermodynamics

Electrostatics  

Electric Charges

Coulomb's Law

Electric Fields

Potential Difference

Capacitors

Current Electricity  

Electric Current

Resistance

Ohm's Law

Circuits

Electric Meters

Circuit Analysis

Magnetism  

Magnetic Fields

The Compass

Electromagnetism

Microelectronics  

Silicon

P-N Junctions

Transistors

Digital Logic

Processing

Integration

Waves & Sound  

Wave Characteristics

Wave Equation

Sound

Interference

Doppler Effect

Optics  

Reflection

Refraction

Diffraction

EM Spectrum

Modern Physics  

Wave-Particle Duality

Models of the Atom

M-E Equivalence

The Standard Model

Relativity

MAGNETISM

Magnetic Fields

The Compass

Electromagnetism  

Electromagnetism

In 1820, Danish physicist Hans Christian Oersted found that a current running through a wire created a magnetic field, kicking off the modern study of electromagnetism.

Moving electric charges create magnetic fields. You can test this by placing a compass near a current-carrying wire. The compass will line up with the induced magnetic field.

To determine the direction of the electrically-induced magnetic field due to a long straight current-carrying wire, use the first right hand rule (RHR) by pointing your right-hand thumb in the direction of positive current flow. The curve of your fingers then shows the direction of the magnetic field around a wire (depicted at right).

You can obtain an even stronger magnetic field by wrapping a coil of wire in a series of loops known as a solenoid and flowing current through the wire. This is known as an electromagnet. You can make the magnetic field from the electromagnet even stronger by placing a piece of iron inside the coils of wire. The second right hand rule tells you the direction of the magnetic field due to an electromagnet. Wrap your fingers around the solenoid in the direction of positive current flow. Your thumb will point toward the north end of the induced magnetic field, as shown below.

Explanation:

You might be interested in
Two charges are located in the x–y plane. If q1 = -2.90 nC and is located at x = 0.00 m, y = 0.840 m and the second charge has m
Lunna [17]

Answer:

Epx= - 21.4N/C

Epy= 19.84N/C

Explanation:

Electric field theory

The electric field at a point P due to a point charge is calculated as follows:

E= k*q/r²

E= Electric field in N/C

q = charge in Newtons (N)

k= electric constant in N*m²/C²

r= distance from load q to point P in meters (m)

Equivalences

1nC= 10⁻⁹C

known data

q₁=-2.9nC=-2.9 *10⁻⁹C

q₂=5nC=5  *10⁻⁹C

r₁=0.840m

r_{2} =\sqrt{1^{2} +0.8^{2} } =\sqrt{1.64}

sin\beta =\frac{0.8}{\sqrt{1.64} } =0.6246

cos\beta =\frac{1}{\sqrt{1.64} } =0.7808

Calculation of the electric field at point P due to q1

Ep₁x=0

Ep_{1y} =\frac{k*q_{1} }{r_{1}^{2}  } =\frac{8.99*10^{9}*2.9*10^{-9}  }{0.84^{2} } =36.95\frac{N}{C}

Calculation of the electric field at point P due to q2

Ep_{2x} =-\frac{k*q_{2} *cos\beta }{r_{2}^{2}  } =-\frac{8.99*10^{9}*5*10^{-9} *0.7808 }{(\sqrt{1.64})^{2}  } =-21.4\frac{N}{C}

Ep_{2y} =-\frac{k*q_{2} *sin\beta }{r_{2}^{2}  } =-\frac{8.99*10^{9}*5*10^{-9} *0.6242 }{(\sqrt{1.64})^{2}  } =-17.11\frac{N}{C}

Calculation of the electric field at point P(0,0) due to q1 and q2

Epx= Ep₁x+ Ep₂x==0 - 21.4N/C =- 21.4N/C

Epy= Ep₁y+ Ep₂y=36.95 N/C-17.11N =19.84N/C

7 0
3 years ago
A mole of a monatomic ideal gas at point 1 (101 kPa, 5 L) is expanded adiabatically until the volume is doubled at point 2. Then
Paha777 [63]

Answer:

(a). Check attachment.

(b). 280.305 J.

(c). 31.81 kpa; 38.26K.

(d). 24.05K.

(e). 24.05k; 40kpa.

(f). -138.6J.

Explanation:

(a). Kindly check the attached picture for the diagram showing the four process.

1 - 2 = adiabatic expansion process.

2 - 3 = Isochoric process.

3 - 4 = isothermal process.

4 - 1 = isochoric process.

(b). Recall that the process from 1 to is an adiabatic expansion process.

NB: b = 5/3 for a monoatomic gas.

Then, the workdone = (1/ 1 - 1.66) [ (p1 × v1^b)/ v2^b × v2 - (p1 × v1)].

= ( 1/ 1 - 5/3) [ (101 × 5^5/3) × 10^1 -5/3] - 101 × 5.

Thus, the workdone = 280.305 J.

(c). P2 = P1 × V1^b/ V2^b = 101 × 5^5/3/ 10^5/3 = 31.81 kpa.

T2 = P2 × V2/ R × 1 = 31.81 × 10/ 8.324 = 38.36k.

(d). The process 2 - 3 is an Isochoric process, then;

T3 = T2/P2 × P3 = 38.26/ 31.82 × 20 = 24.05K.

(e). The process 3 - 4 Is an isothermal process. Then, the temperature at 4 will be the same temperature at 3. Tus, we have the temperature; point 3 = point 4 = 24.05k.

The pressure can be determine as below;

P4 = P3 × V3/ V4 = 20 × 10/ 5 = 200/ 5 = 40 kpa.

(f) workdone = xRT ln( v4/v3) = 1 × 8.314 × 24.05 × ln (5/10) = - 138.6 J

6 0
3 years ago
You stand on a merry-go-round which is spinning at f = 0.25 revolutions per second. You are R = 200 cm from the center. (a) Find
wariber [46]

Answer:

a) ω = 9.86 rad/s

b) ac = 194. 4 m/s²

c) minimum coefficient of static friction, µs = 19.8

Explanation:

a) angular speed, ω = 2πf, where f is frequency of revolution

1 rps = 6.283 rad/s, π = 3.142

ω = 2 * 3.14 * 0.25 * 6.28

ω = 9.86 rad/s

b) centripetal acceleration, a = rω²

where r is radius in meters; r = 200 cm or 2 m

a = 2 * 9.86²

a = 194. 4 m/s²

c) µs = frictional force/ normal force

frictional force = centripetal force = ma; where a is centripetal acceleration

normal force = mg; where g = 9.8 m/s²

µs = ma/mg = a/g

µs = 194.4 ms⁻²/9.8 ms⁻²

c) minimum coefficient of static friction, µs = 19.8

5 0
3 years ago
You drop a ball from a height of 2.0 m, and it bounces back to a height of 1.5 m. (a) what fraction of its initial energy is los
Scilla [17]

a) At a position of 2.0m, the Initial energy is all made up of the potential energy=m*g*hi<span>
and meanwhile at 1.5 all its energy is also potential energy=m*g*hf 

The percentage of energy remaining is E=m*g*hi/m*g*hf x 100 

and since mass and gravity are constant so it leaves us with just E=hi/hf 
which 1.5/2.0 x100= 75% so we see that we lost 25% of the energy or 0.25 in fraction 

b) Here use the equation vf^2=vi^2+2gd 

<span>where g is gravity, vf is the final velocity and vi is the initial velocity while d is the distance travelled

so in here we are looking for the vi so let us isolate that variable 
we know that at maximum height or peak, the velocity is 0 so vf is 0 

therefore,</span></span>

vi =sqrt(-2gd) <span>
vi =sqrt(-2x-9.81x1.5) </span>
<span>vi =5.4 m/s

<span>c) The energy was converted to heat due to friction with the air and the ground.</span></span>

6 0
3 years ago
En un momento dado , la nadadora de una prueba de natación de 100 m espalda está debajo de la cuerda falsa de salida. Indica a)
Virty [35]

Answer:

I only speak English

Explanation:

I'm sorry can you type it in English

7 0
3 years ago
Other questions:
  • Two tuning forks, 254 Hz. and 260 Hz., are struck simultaneously. How many beats will be heard?
    9·1 answer
  • How long will the cylinder last at the given flow rate is the pressure is 1000 psi?
    9·1 answer
  • The process of changing a property of a wave to transmit information is called .
    14·2 answers
  • Which of the following quantities is a scalar? <br>I need help plz someone help me!!!!!
    10·2 answers
  • A model of a helicopter rotor has four blades, each of length 3.0 m from the central shaft to the blade tip. The model is rotate
    5·1 answer
  • A truck driver is broadcasting at a frequency of 27.075 MHz with a CB (citizen's band) radio. Determine the wavelength of the el
    15·1 answer
  • A drag racer starts her car from rest and
    12·1 answer
  • For stars to form, the temperature of the hydrogen in a nebula must be more than 14 million Kelvin. How did gravitational attrac
    11·2 answers
  • A block of wood has density 0.500 g/cm3 and mass 2 000 g. It floats in a container of oil (the oil's density is 0.750 g/cm3). Wh
    8·1 answer
  • How far away is the closest star?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!