1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alja [10]
3 years ago
9

The magnetic force on a wire 274 cm long is . If electrons move through the wire in 1.90 s, what is the magnitude of magnetic fi

eld that is perpendicular to the wire?
Physics
1 answer:
kozerog [31]3 years ago
3 0

Answer:

Matter & Energy

Math Review

Kinematics  

Defining Motion

Graphing Motion

Kinematic Equations

Free Fall

Projectile Motion

Relative Velocity

Dynamics

Newton's 1st Law

Free Body Diagrams

Newton's 2nd Law

Static Equilibrium

Newton's 3rd Law

Friction

Ramps and Inclines

Atwood Machines

Momentum

Impulse & Momentum

Conservation Laws

Types of Collisions

Center of Mass

UCM & Gravity

Uniform Circular Motion

Gravity

Kepler's Laws

Rotational Motion  

Rotational Kinematics

Torque

Angular Momentum

Rotational KE

Work, Energy & Power

Work

Hooke's Law

Power

Energy

Conservation of Energy

Fluid Mechanics  

Density

Pressure

Buoyancy

Pascal's Principle

Fluid Continuity

Bernoulli's Principle

Thermal Physics  

Temperature

Thermal Expansion

Heat

Phase Changes

Ideal Gas Law

Thermodynamics

Electrostatics  

Electric Charges

Coulomb's Law

Electric Fields

Potential Difference

Capacitors

Current Electricity  

Electric Current

Resistance

Ohm's Law

Circuits

Electric Meters

Circuit Analysis

Magnetism  

Magnetic Fields

The Compass

Electromagnetism

Microelectronics  

Silicon

P-N Junctions

Transistors

Digital Logic

Processing

Integration

Waves & Sound  

Wave Characteristics

Wave Equation

Sound

Interference

Doppler Effect

Optics  

Reflection

Refraction

Diffraction

EM Spectrum

Modern Physics  

Wave-Particle Duality

Models of the Atom

M-E Equivalence

The Standard Model

Relativity

MAGNETISM

Magnetic Fields

The Compass

Electromagnetism  

Electromagnetism

In 1820, Danish physicist Hans Christian Oersted found that a current running through a wire created a magnetic field, kicking off the modern study of electromagnetism.

Moving electric charges create magnetic fields. You can test this by placing a compass near a current-carrying wire. The compass will line up with the induced magnetic field.

To determine the direction of the electrically-induced magnetic field due to a long straight current-carrying wire, use the first right hand rule (RHR) by pointing your right-hand thumb in the direction of positive current flow. The curve of your fingers then shows the direction of the magnetic field around a wire (depicted at right).

You can obtain an even stronger magnetic field by wrapping a coil of wire in a series of loops known as a solenoid and flowing current through the wire. This is known as an electromagnet. You can make the magnetic field from the electromagnet even stronger by placing a piece of iron inside the coils of wire. The second right hand rule tells you the direction of the magnetic field due to an electromagnet. Wrap your fingers around the solenoid in the direction of positive current flow. Your thumb will point toward the north end of the induced magnetic field, as shown below.

Explanation:

You might be interested in
A wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.15 m2 and whose thickn
KengaRu [80]

Answer:

88 %

Explanation:

The rate of heat loss by a conducting material of thermal conductivity K, cross-sectional area,A and thickness d with a temperature gradient ΔT is given by

P = KAΔT/d

The total heat lost by the styrofoam wall is P₁ = K₁A₁ΔT₁/d₁ where K₁ =thermal conductivity of styrofoam wall 0.033 W/m-K, A₁ = area of styrofoam wall = 17 m², ΔT₁ = temperature gradient between inside and outside of the wall and d₁ = thickness of styrofoam wall = 0.20 m

The total heat lost by the glass window is P₂ = K₂A₂ΔT₂/d₂ where K₂ =thermal conductivity of glass window pane wall 0.96 W/m-K, A₂ = area of glass window pane = 0.15 m², ΔT₂ = temperature gradient between inside and outside of the window and d₂ = thickness of glass window pane = 7 mm = 0.007 m

The total heat lost is P = P₁ + P₂ = K₁A₁ΔT₁/d₁ + K₂A₂ΔT₂/d₂

Now, since the temperatures of both inside and outside of both window and wall are the same, ΔT₁ = ΔT₂ = ΔT

So, P = K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂

Since P₂ = K₂A₂ΔT₂/d₂ = K₂A₂ΔT/d₂is the heat lost by the window, the fraction of the heat lost by the window from the total heat lost is

P₂/P = K₂A₂ΔT/d₂ ÷ (K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂)

= 1/(K₁A₁ΔT/d₁÷K₂A₂ΔT/d₂ + 1)

= 1/(K₁A₁d₂÷K₂A₂d₁ + 1)

= 1/[(0.033 W/m-K × 17 m² × 0.007 m ÷ 0.96 W/m-K × 0.15 m² × 0.20 m) + 1]

= 1/(0.003927/0.0288 + 1)

= 1/(0.1364 + 1)

= 1/1.1364

= 0.88.

The percentage is thus P₂/P × 100 % = 0.88 × 100 % = 88 %

The percentage of heat lost by window of the total heat is 88 %

6 0
3 years ago
The lowest surface temperature in the solar system (-200°c occurs on
zimovet [89]
The lowest surface temperature in the solar system was recorded on Uranus (-224 degrees Celsius). The temperature of a planet does not only depend on the amount of solar radiation that it receives but also on the amount of heat that it gives off. Because of Uranus' orientation it absorbs little radiation which makes it colder than Neptune although Neptune is further away from the Sun. <span />
3 0
3 years ago
Choose true or false for each statement regarding a parallel plate capacitor.. The voltage of a disconnected charged capacitor i
OlgaM077 [116]

Answer:

Explanation:

The voltage of a disconnected charged capacitor increases when the plate area is decreased.

When plate area decreases , capacitance C decreases , but charge Q remains constant .

Q = C V where C is capacitance and V is voltage .

when C decreases , V increases for keeping Q constant .

So the statement is true.

The electric field is dependent on the charge density on the plates.

This statement is true .

The voltage of a connected charged capacitor remains the same when the plate area is decreased .

For a connected capacitor , V or voltage is constant which is equal to voltage of charging battery .

So the statement is true .

3 0
3 years ago
The meaning of magnetism
never [62]
Magnetism is <span>a physical phenomenon produced by the motion of electric charge, resulting in attractive and repulsive forces between objects.</span>
5 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
2 years ago
Other questions:
  • 90 percent round to the thousandths place
    14·2 answers
  • Dis hard for me plz plz answer...
    15·1 answer
  • If a net horizontal force of 175 N is applied to a bike whose mass is 50 kg what acceleration is produced?
    11·1 answer
  • How to find answers to webassign questions online
    6·1 answer
  • Why do you think that most of your body is made of this material?
    15·1 answer
  • Find the height of the coconut from the ground at the moment the arrow hit it.
    15·1 answer
  • Which two surfaces have the lowest coefficient of friction
    7·1 answer
  • *
    15·1 answer
  • As a bullet shot vertically upward rises, the kinetic energy of the bullet
    11·1 answer
  • Q/C S Starting with the definition of work, prove that at every point on an equipotential surface, the surface must be perpendic
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!