If you are talking about ocean waves crashing into each other, they would probably mostly cancel out with just a bit of motion left over. If you are talking about things like frequency and amplitude, overlapping waves would combine and amplify or suppress each other, depending on their direction, position, frequency and amplitude. If the two waves complement each other, they amplify; if they conflict with each other, they are suppressed.
Given Information:
Magnetic field = B = 1×10⁻³ T
Frequency = f = 72.5 Hz
Diameter of cell = d = 7.60 µm = 7.60×10⁻⁶ m
Required Information:
Maximum Emf = ?
Answer:
Maximum Emf = 20.66×10⁻¹² volts
Explanation:
The maximum emf generated around the perimeter of a cell in a field is given by
Emf = BAωcos(ωt)
Where A is the area, B is the magnetic field and ω is frequency in rad/sec
For maximum emf cos(ωt) = 1
Emf = BAω
Area is given by
A = πr²
A = π(d/2)²
A = π(7.60×10⁻⁶/2)²
A = 45.36×10⁻¹² m²
We know that,
ω = 2πf
ω = 2π(72.5)
ω = 455.53 rad/sec
Finally, the emf is,
Emf = BAω
Emf = 1×10⁻³*45.36×10⁻¹²*455.53
Emf = 20.66×10⁻¹² volts
Therefore, the maximum emf generated around the perimeter of the cell is 20.66×10⁻¹² volts
The length of a 2 sec pendulum is 1 m.
Given that, initial length of the simple pendulum L₁ = 1 m
Initial time period T₁ = 2 sec
We need to find the length of the pendulum whose time period is 2 sec
T₂ = 2 sec
L₂ = ?
We know that the time period of the simple pendulum is given by the formula,
T = 2π√(L/g)
From the above relation, we can write T ∝ √L
T₁ / T₂ = √(L₁/L₂)
Making L₂ from the above relation, we have,
L₂ = (T₂² * L₁)/ T₁² = 2² * 1/ 2² = 1 m
Thus, the length of a 2 sec pendulum is 1 m.
To know more about time period:
brainly.com/question/17350379
#SPJ4
The acceleration should 5.4 m/s^2