1. In this reaction, 2 moles of nitrogen gas reacts with 3 moles of oxygen gas to give 2 moles of N2O3 gas. 2 nitrogen molecules react with 3 oxygen molecules to give 2 N2O3 molecules. Under STP, one mole of an ideal gas occupies a volume of 22.4 liters. So in this reaction, 44.8 liters of nitrogen gas reacts with 67.2 liters of oxygen gas to give 44.8 liters of N2O3 gas. The total mass of the reactants (N2 and O2) is the same as the total mass of the product (N2O3). This is called mass balance of a chemical reaction.
2. According to the chemical reaction, 3 moles of chlorine gas produces 2 moles of iron(III) chloride. So, to produce 1 moles of iron(III) chloride, 3/2 (1.5) moles of chlorine gas is required. Therefore, to produce 14 moles of iron(III) chloride, 14 x 1.5 = 21 moles of chlorine is needed.
Answer:
7.85% of Hydrogen in the sample.
Explanation:
51/650 = .07846 x 100= 7.846% (round up)
Answer:
I Believe it is 4 orbitals s,p,p,p or aka sp^3
Explanation:
Answer:
THE TRUE STATEMENTS REGARDING REACTION RATE IS "INCREASING TEMPERATURE OR ADDING A CATALYST WILL INCREASE THE REACTION RATE".
Explanation:
The rate of a chemical reaction is the number of moles of reactant converted or product formed per unit time. There are various factors that affect reaction rate and they include;
1. Nature of the reactant
2. concentration and pressure of reactants. pressure is for gases.
3. temperature of the reactants.
4. surface areas of the reactants
5. presence of light
6. presence of catalyst.
I will talk about the role of temperature and catalyst in reaction rate.
TEMPERATURE:
The rate of virtually all reactions (chemical) increase when the temperature is increased. increasing the temperature of a system both exothermic and endothermic reactions, energy in the form of heat is supplied to the system which thus increases the number of particles with energies equal to or more than the activation energy of the system. This increase in particles leads to increase in collision and thus the reaction proceed faster.
CATALYST
A catalyst is a substance which alters the rate of a chemical reaction but remains unchanged at the end of the reaction. Catalyst operates by providing an alternative route for the reaction to occur. So adding a catalyst and has a lower activation energy when added increases the rate of reaction as more particles can collide with each other. This kind of catalyst is called positive catalyst. A catalyst that provides an alternative route with a higher activation energy is called negative catalyst.
Answer:
Hope it helps.
Explanation:
It decays by beta particle emission into xenon-131. After eight days have passed, half of the atoms of any sample of iodine-131 will have decayed, and the sample will now be 50% iodine-131 and 50% xenon-131