Coupla things wrong with this question, Sam.
Let's clean those up first, and then we'll work on the answer.
-- The car is NOT moving with uniform velocity.
'Velocity' includes both speed and direction. If either of these
changes, it's a change of velocity.
On a circular track, the car's direction is CONSTANTLY changing,
so its velocity is too.
The thing that's uniform is its speed, not its velocity.
-- A 'neutron' is a subatomic particle found in the nucleus of most
atoms. It's not a unit of force. The unit of force is the 'Newton'.
_______________________
OK. A centripetal force of 6,000 newtons keeps 1,200 kg of mass
moving in a circle at 20 m/s.
The formula:
Centripetal force = (mass) (speed)² / (radius)
Multiply each side
by 'radius': (centripetal force) x (radius) = (mass) x (speed)²
Divide each side by
'centripetal force': Radius = (mass) x (speed)² / (centripetal force)
Write in the numbers
that we know: Radius = (1200 kg) (20 m/s)² / (6000 Newtons)
= (1200 kg) (400 m²/s²) / (6000 Newtons)
= (480,000 kg-m²/s²) / (6000 kg-m/s²)
= (480,000 / 6000) meters
= 80 meters .
Work=Force x Distance
2x25=50
The correct answer is C
Answer:
The acceleration is 3.62 m/s²
Explanation:
Step 1: Data given
mass of the shell = 1.65 kg
angle = 38.0 °
Step 2: Calculate the acceleration
We have 2 forces working on the line of motion:
⇒ gravity down the slope = m*g*sinα
⇒ provides the linear acceleration
⇒ friction up the slope = F
⇒ provides the linear acceleration and also the torque about the CoM.
∑F = m*a = m*g*sin(α) - F
I*dω/dt = F*R
The spherical shell with mass m has moment of inertia I=2/3*m*R² Furthermore a pure rolling relates dω/dt and a through a = R dω/dt. So the two equations become
m*a = m*g sin(α) - F
2/3*m*a = F
IF we combine both:
m*a = m*g*sin(α) - 2/3*m*a
1.65a = 1.65*9.81 * sin(38.0) - 2/3 *1.65a
1.65a + 1.1a = 9.9654
2.75a = 9.9654
a = 3.62 m/s²
The acceleration is 3.62 m/s²
Answer:
One piece has a north pole only, and the other piece has à soutn pole only.
Explanation:
mark me brainliest!!
Answer:
(a) 1.21 m/s² (b) 1.75 m/s²
Explanation:
The initial speed of the car, u = 17.8 m/s
Case 1.
Final speed of the car, v = 23.5 m/s
Time, t = 4.68-s
Acceleration = rate of change of velocity

Case 2.
Final speed of the car, v = 15.3 m/s

Hence, this is the required solution.