Answer:
1 m
Explanation:
L = 100 m
A = 1 mm^2 = 1 x 10^-6 m^2
Y = 1 x 10^11 N/m^2
F = 1000 N
Let the cable stretch be ΔL.
By the formula of Young's modulus



ΔL = 1 m
Thus, the cable stretches by 1 m.
Explanation:
The gravitational force equation is the following:

Where:
G = Gravitational constant = 
m1 & m2 = the mass of two related objects
r = distance between the two related objects
The problem gives you everything you need to plug into the formula, except for the gravitational constant. Let me know if you need further clarification.
Answer:
Law 1. A body continues in its state of rest, or in uniform motion in a straight line, unless acted upon by a force.
Law 2. A body acted upon by a force moves in such a manner that the time rate of change of momentum equals the force.
Law 3. If two bodies exert forces on each other, these forces are equal in magnitude and opposite in direction.
Answer:a) 34.5 N; b) 24.5 N; c) 10 N; d) 1J
Explanation: In order to solve this problem we have to used the second Newton law given by:
∑F= m*a
F-f=m*a where f is the friction force (uk*Normal), from this we have
F= m*a+f=5 Kg*2 m/s^2+0.5*5Kg*9.8 m/s^2= 34.5 N
then f=uk*N=0.5*5Kg*9.8 m/s^2= 24.5N
the net Force = (34.5-24.5)N= 10 N
Finally the work done by the net force is equal to kinetic energy change so
W=∫Force net*dr= 10 N* 0.1 m= 1J