Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²
Answer:
2682
Explanation:
Work done is given by :
Work = Force x distance
= mg x d
So, work done in lifting the box of 23 kg up to my waist of 1 m high is :
W = mg x d
= 23 x 9.18 x 1
= 211.14
Now work done carrying the box horizontally 6 meters across the room is
W = mg x d
= 23 x 9.18 x 6
= 1266.84
Work done in placing the box on the shelf that is 5.7 m above the ground is
W = mg x d
= 23 x 9.18 x 5.7
= 1203.49
So the total work done is = 211.14 + 1266.84 + 1203.49
= 2681.47
= 2682 (rounding off)
Answer: Option (c) is the correct answer.
Explanation:
Language is defined as a medium through which a person can deliver its thoughts, ideas, or perceptions to one or more individuals.
For example, Leslie is feeling sad and that is why she is crying. Therefore, listening a cry sound her friend sitting in the next room came immediately to console her.
Hence, sound of crying is also a sign of language that tells Leslie is sad about something.
Therefore, we can conclude that the statement languages use spoken sounds, written words, and signs to represent ideas and events, is true about language.
This could be wrong but I am giving a decent suggestion: All ions are atoms with a negative charge.
<span>Yes, there are! r1 and r2 are numbers. The volume of the hollow shell is 4 π 3 ( r 3 1 − r 3 2 ) 4π3(r13−r23). Now multiply by ρ to get the mass.</span>