Answer:
t=0.0625s
Explanation:
F=number of swings/time taken
DATA
Frequency=4.0Hz
number of swings from Q to R
=1/4
time taken=?
Frequency=number of swings/time taken
make t the subject of the formula
t=n/f
substitute the given date
t=0.25/4.0
t=0.0625s
option A is collect
Answer:
v₀ = 60.38 mi / h
With this stopping distance, the starting speed should have been 60.38 mi/h, which is much higher than the maximum speed allowed.
Explanation:
For this exercise let's start by using Newton's second law
Y axis
N-W = 0
N = W
X axis
fr = m a
the expression for the friction force is
fr = μ N
we substitute
μ mg = m a
μ g = a
calculate us
a = 0.620 9.8
a = 6.076 m / s²
now we can use the kinematics relations
v² = v₀² - 2 a x
suppose v = 0
v₀ =
Ra 2ax
let's calculate
v₀ = 
v₀ = 27.00 m / s
let's slow down to the english system
v₀ = 27.0 m / s (3.28 ft / 1m) (1 mile / 5280 ft) (3600s / 1h)
v₀ = 60.38 mi / h
With this stopping distance, the starting speed should have been 60.38 mi/h, which is much higher than the maximum speed allowed.
Answer: I think cars are designed to have crumble zone because lets say you're going 60-70 mph and you hit a brick wall that cant move, it would be a very hard jolt causing the beings inside to get thrown forward, but if it has a crumble zone it would slow the the jolt from is slowing down in the hit.
at the top most point if Rupert will not fall then normal force at the top point is almost zero for minimum speed
so here we can say

now if





so above will be the minimum speed
Answer: 1.8 g
Explanation:
We start first, by calculating the amount of Helium
n = m/M
m = mass of Helium
M = molar mass if Helium
n = 2/4 = 0.5 moles
proceeding further, we use ideal gas law. PV = nRT
Then we have
P1V1/n1T1 = P2V2/n2T2
So that,
n2 = n1T1P2V2/P1V1T2
From the question, we know that, P1 = P2, and T1 = T2. So that,
n2 = n1v2/v1
n2 = (0.5 * 3.9) / 2
n2 = 1.95/2
n2 = 0.975 moles. With this, we can determine the mass, m2 of Helium
n = m/M
m = n * M
m = 0.975 * 3.9
m = 3.8
The difference between both masses are 3.8 - 2 = 1.8 g
Thus, 1.8 g of Helium was added to the cylinder