1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melamori03 [73]
3 years ago
14

The (blank) of vibration of a wave is defined as that which has the lowest frequency

Physics
2 answers:
saveliy_v [14]3 years ago
6 0
Fundamental frequency
Murljashka [212]3 years ago
3 0

Answer:

the <u>Fundamental Frequency</u> of vibration of a wave is defined as that which has the lowest frequency

Explanation:

As we know that the frequency of vibrations on a string is given as

f = \frac{Nv}{2L}

now we know that

N = number of harmonics

v = speed of the wave

L = length of the string

So here for the lowest frequency of the wave we know that

N = 1

so lowest frequency of the wave is known as fundamental frequency of the wave

the <u>Fundamental Frequency</u> of vibration of a wave is defined as that which has the lowest frequency

You might be interested in
All of these are types of electromagnetic waves except for:
dimaraw [331]
C- Sigma Waves, This is what my teacher used to get us to remember https://www.youtube.com/watch?v=bjOGNVH3D4Y
3 0
2 years ago
A 0.01 kg spring toy is compressed 0.02 m and released vertically. The toy is measured to reach 0.25 m in the air. Determine the
Scorpion4ik [409]

Answer:

122.5 N/m

Explanation:

According to the law of conservation of energy, if there is no air resistance or frictional forces, the initial elastic potential energy of the spring toy is entirely converted into gravitational potential energy when the toy reaches the highest point.

Therefore, we can write:

\frac{1}{2}kx^2=mgh

where the term on the left is the initial elastic potential energy while the term on the right is the gravitational potential energy, and where

k is the spring constant

x = 0.02 m is the compression of the spring

m = 0.01 kg is the mass of the toy

h = 0.25 m is the height reached by the toy

g=9.8 m/s^2 is the acceleration due to gravity

Solving for k,

k=\frac{2mgh}{x^2}=\frac{2(0.01)(9.8)(0.25)}{(0.02)^2}=122.5 N/m

8 0
2 years ago
Calculate the translational speed of a cylinder when it reaches the foot of an incline 7.05 mm high. Assume it starts from rest
mestny [16]

Height is 7.05 m and not 7.05 mm

Answer:

9.603 m/s

Explanation:

We are dealing with rotation, so velocity of centre of mass is given by;

v_cm = Rω

Since we are working with a solid cylinder, moment of inertia of the cylinder is; I = ½mR²

Since it is rolled from the top to the bottom, at the top it will have potential energy(mgh) while at the bottom it will have kinetic energy (rotational plus translational kinetic energy).

Using conservation of energy, we have:

P.E = K.E_t + K.E_r

Formula for rotational and kinetic energy here are;

K.E_t = ½mv²

K.E_r = ½Iω²

mgh = ½mv² + ½Iω²

Since we want to find translational speed(v), let's get rid of ω.

Earlier, we saw that v_cm = Rω

Thus; ω = v/R

Also, we know that I = ½mR².

Thus;

mgh = ½mv² + ½(½mR²)(v/R)²

This gives;

mgh = ½mv² + ¼mv²

Divide through by m to get;

gh = v²(½ + ¼)

gh = ¾v²

Making v the subject gives;

v = √(4gh/3)

v = √((4 × 9.81 × 7.05)/3)

v = 9.603 m/s

6 0
2 years ago
A large container contains a large amount of water. A hole is drilled on the wall of the container, at a vertical distance h = 0
barxatty [35]

Answer:

Velocity = 3.25[m/s]

Explanation:

This problem can be solved if we use the Bernoulli equation: In the attached image we can see the conditions of the water inside the container.

In point 1, (surface of the water) we have the atmospheric pressure and at point 2 the water is coming out also at atmospheric pressure, therefore this members in the Bernoulli equation could be cancelled.

The velocity in the point 1 is zero because we have this conditional statement "The water surface drops very slowly and its speed is approximately zero"

h2 is located at point 2 and it will be zero.

(P_{1} +\frac{v_{1}^{2} }{2g} +h_{1} )=(P_{2} +\frac{v_{2}^{2} }{2g} +h_{2} )\\P_{1} =P_{2} \\v_{1}=0\\h_{2} =0\\v_{2}=\sqrt{0.54*9.81*2}\\v_{2}=3.25[m/s]

4 0
3 years ago
A world-class sprinter can burst out of the blocks to essentially top speed (of about 11.5 m/s) in the first 15.0 m of the race.
wolverine [178]
Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.

Let
a =  average acceleration,
t = time taken to attain final speed.

Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²

Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s

Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).
8 0
3 years ago
Other questions:
  • If a bus you are riding is traveling at a constant speed and then stops suddenly, you feel "thrown" forward. Which of the follow
    15·1 answer
  • Philip was diagnosed with __________ vestibular disorder, which is a dysfunction of the nervous system that processes balance. A
    10·2 answers
  • What internal process cause most earthquake
    14·2 answers
  • What type of energy depends upon an object mass and the object speed?
    8·1 answer
  • .What​ ​is​ ​the​ ​momentum​ ​of​ ​a​ ​car​ ​with​ ​a​ ​mass​ ​of​ ​1,300​ ​kg​ ​traveling​ ​north​ ​at​ ​a​ ​speed​ ​of 28​ ​m/
    9·1 answer
  • Which statement correctly describes these electric field lines?
    6·1 answer
  • Does warm water hold more salt then cold water?
    15·2 answers
  • What TWO things do all vectors have?
    12·2 answers
  • What is the difference between a lunar eclipse and a solar eclipse?
    6·2 answers
  • Suppose the spark plug on a heat engine is not functioning properly which statement best explains how this will affect the engin
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!