Answer:
To derive the fourth equation of motion, first we have to consider the equation for acceleration and then to rearrange it. or v2 = u2 + 2as and this equation of motion can be used to find the final velocity or the distance travelled if the other values are given.
Explanation:
v= u + at
s =( u + v ) t /2
s = ut + at2/2
v2 = u2 + 2as
The tension in the cord is 14.7 N and the force of pull of the cord is 14.7 N, assuming the block is stationary.
<h3>
What is the tension in the cord?</h3>
The tension in the cord is calculated as follows;
T = ma + mg
where;
- a is the acceleration of the block
- g is acceleration due to gravity
- m is mass of the block
T = m(a + g)
T = 1.5(a + 9.8)
T = 1.5a + 14.7
Thus, the tension in the cord is (1.5a + 14.7) N.
If the block is at rest, the tension is 14.7 N.
<h3>Force of the force</h3>
The force with which the cord pulls is equal to the tension in the cord
F = T = m(a + g)
F = (1.5a + 14.7) N
If the block is stationary, a = 0, the tension and force of pull of the cord = 14.7 N.
Thus, the tension in the cord is 14.7 N and the force of pull of the cord is 14.7 N, assuming the block is stationary.
Learn more about tension here: brainly.com/question/187404
#SPJ1
A selective breeding. Put your best animals together to get better offspring.
In vacuum, going at 2.99×10^8 m/s.