A.) is chemical, B.) is physical, C.) is physical, D.) is chemical, E.) is physical, F.) is physical, G.) is physical, and H.) is chemical.
Answer:
you havent given the full question
but im guessing momentum
momentum is the quantity of motion of a moving body, measured as a product of its mass and velocity or the impetus gained by a moving object.
Explanation:
as the child is pushed, it gathers momentum as its weight allows it be pushed forward, and the velocity is the speed driven by the amount of force the parent pushes on the child whilst they are swinging. The momentum is the result of this action
the equation that links these factors together are
p = mv
p = momentum
m = mass
v = velocity
hope i got it right ._.
Answer:
Explanation:
The form of Newton's 2nd Law that we use for this is:
F - f = ma where F is the Force pulling the mass down the ramp forward, f is the friction trying to keep it from moving forward, m is the mass and a is the acceleration (and our unknown).
We know mass and we can find f, but we don't have F. But we can solve for that by rewriting our main equation to reflect F:
That's everything we need.
w is weight: 6.0(9.8). Filling in:
6.0(9.8)sin20 - .15(6.0)(9.8) = 6.0a and
2.0 × 10¹ - 8.8 = 6.0a and
11 = 6.0a so
a = 1.8 m/s/s
Answer:

Explanation:
GIVEN
diameter = 15 fm =
m
we use here energy conservation

there will be some initial kinetic energy but after collision kinetic energy will zero

on solving these equations we get kinetic energy initial
J ..............(i)
That is, the alpha particle must be fired with 35.33 MeV of kinetic energy. An alpha particle with charge q = 2 e
and gains kinetic energy K =e∆V ..........(ii)
by accelerating through a potential difference ∆V
Thus the alpha particle will
just reach the
nucleus after being accelerated through a potential difference ∆V
equating (i) and second equation we get
e∆V = 35.33 Me V
