Balanced chemical reaction:
MgSO₄(aq) + Sr(NO₃)₂(aq) → Mg(NO₃)₂(aq) + SrSO₄(s).
Ionic reaction:
Mg²⁺(aq) + SO₄²⁻(aq) + Sr²⁺(aq) + 2NO₃⁻(aq) → Mg²⁺(aq) + 2NO₃⁻(aq) + SrSO₄(s).
Net ionic reaction:
Sr²⁺(aq) + SO₄²⁻(aq) → SrSO₄(s).
Magnesium sulfate (MgSO₄), strontium nitrate (Sr(NO₃)₂ and magnesium nitrate (Mg(NO₃)₂) are soluble in water. Strontium sulfate (SrSO₄) is not soluble in water.
This chemical reaction is double displacement reaction - cations and anions of the two reactants switch places and form two new compounds.
Answer:
The elements in__Group_ 0 of the Periodic Table are called the_noble__gases. They are generally __unreactive_. because they have a__full_outer shell of electrons. So they do not need to gain__lose_or share _electrons_ with other atoms.
There are different chemical agents which are used to study the heart rate of frog. Generally Ringer's solution is used to study frog's heart simulation. At different temperature, frogs heart speeds up or slows down while using Ringer's solution at experiment. Ringer's solution is mixture of salt solution which comprises of NaCl, KCl, CaCl2 and Na2CO3. Sometimes other chemicals like MgCl or antibiotics are also used as addition in Ringer's solution.
This solution is chiefly used to study in vitro experiments on organs and tissues like frog's heart.
Ringer's solution at 23 degree Celsius for normal heart rate
Ringer's solution at 32 degree Celsius, heart rate speed up and
Ringer's solution at 5 degree Celsius, heart rate slows down.
other chemicals also have significant effect in heart rate,
For example, Calcium ion in excess will slow down the heart rate, Atropine increases heart rate and digitalis slows down the heart rate.
Answer:
lever Levers
Types of lever
Levers are all around us. Hammers, axes, tongs, knives, screwdrivers, wrenches, scissors—all these things contain levers.
Explanation:
To solve this problem, we must be given first the density
of air at 20 degrees Celsius. Looking up online, this is equal to:
density air (20C) = 0.0012041 g/mL
so that the volume is:
volume balloon = 0.57 g / (0.0012041
g/mL)
<span>volume balloon = 473.38 mL</span>