Answer:
is the value of the equilibrium constant at this temperature.
Explanation:
Equilibrium constant in terms of partial pressure is defined as the ratio of partial pressures of products to the partial pressures of reactants each raised to the power equal to their stoichiometric ratios. It is expressed as 

Partial pressures at equilibrium:



The equilibrium constant in terms of pressures is given as:


is the value of the equilibrium constant at this temperature.
Answer:
It is expressed as a multiple of one-twelfth the mass of the carbon-12 atom, 1.992646547 × 10−23 gram, which is assigned an atomic mass of 12 units. ... In this scale 1 atomic mass unit (amu) corresponds to 1.660539040 × 10−24 gram.
Answer: Atomic Nucleus!
Explanation: All atoms have a dense central core called the atomic nucleus. Forming the nucleus are two kinds of particles: protons, which have a positive electrical charge, and neutrons, which have no charge.
(Yes, it was from google.)
Answer:
<span>The mole concept is important in chemistry because, "</span>Atoms and molecules are very small and the mole concept allows us to count atoms and molecules by weighing macroscopic amounts of material".
Explanation:
To understand this question lets take an example of Hydrogen atom. Let suppose you need to react Hydrogen with Oxygen. You need exactly Two Hydrogen atoms and one Oxygen atom to form one water molecule.
The mass of 1 hydrogen atom is 1.76 × 10⁻²⁴ grams. How will you count the Hydrogen atoms??? How can you measure exactly for 1 Million Hydrogen Atoms???
Answer to these questions and Calculations lies in Mole. It is found that 1 Mole of Hydrogen weights exactly 1.008 gram and contains 6.022 × 10²³ atoms. Now, having this reference in hand you can calculate for any number of Hydrogen atoms.
Result:
So the Mole helps us to zoom a microscopic level to a macroscopic level. :)
Answer:
The correct answer is B.
The
is samller than
of the reaction . So,the reaction will shift towards the left i.e. towards the reactant side.
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:
![Q=\frac{[PCl_3][Cl_2]}{[[PCl_5]^1}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5B%5BPCl_5%5D%5E1%7D)


Given :
= 0.0454
Thus as
, the reaction will shift towards the left i.e. towards the reactant side.