<span>Answer:
F(x) = ax^2 - bx
or
F(x) = ax² - bx
F(x) = 30x² - 6x
â«F(x)dx = â«(30x² - 6x)dx
as this is evaluated from zero to x
W = 10x³ - 3x² <===ANS
W = 10(0.42³) - 3(0.42²) - [10(0³) - 3(0²)]
W = 0.212 J <===ANS
W = 10(0.72³) - 3(0.72²) - [10(0.42³) - 3(0.42²)]
W = 1.966 J <===ANS</span>
Newton’s 2nd law states that Force is equal to
the product of mass (m) and acceleration (a):
F = m a --->
1
While in magnetic forces, force can also be expressed as:
F = q v B --->
2
where,
q = total charge
v = velocity = 45 cm / s = 0.45 m / s
B = the magnetic field = 85 T
First we solve for the total charge, q:
q = 3.8 × 10^-23 g (1 mol / 23 g) (6.022 × 10^23 electrons / mol) (1.602 ×
10^-19 C / electron)
q = 1.594 × 10^-19 C
We equate equations 1 and 2 then solve for acceleration a:
m a = q v B
a = q v B / m
a = [1.594 × 10^-19 C * 0.45 m / s * 85 T] / 3.8 × 10-26 kg
a = 160,437,862.2 m/s^2
Therefore the maximum acceleration of Na ions is about 160 × 10^6 m/s^2.
Answer:
The funda mental frequency of the original tube is 182Hz.
Explanation:
See the attachment for the calculation steps.
In order to calculate the fundamental frequency of the original closed tube we need to find the length of the tube which is equal to the sum of the lengths of the two new tubes.
For closed tubes
f = nv/4L (n = 1, 3, 5,...n)
f = nv/2L (n = 1, 2, 3,...n)
The details of calculation can be found below in the attachment.
<em>meter per</em><em> </em><em>second</em><em> </em><em>is </em><em>the </em><em>main </em><em>answer </em><em>of</em><em> </em><em>both</em>