B) 7.87 m/s
The gravitational pull is the rate of change of velocity which is the acceleration. Formula for acceleration is;

Given:
• Initial velocity = 0m/s; I dropped the ball, and didn't throw it, so it was at rest firstly
• Time taken = 2.40s
• Acceleration = 3.28m/s^2
We're require to find the final velocity, at which the ball hit the ground with. Ignoring air resistance, keep in mind that the velocity of an object increases as it comes closer to the ground.


“Most climate scientists
believe that there is evidence that explains global warming” is best supported by
this study.
The drastic increase in the emission of CO2 (carbon dioxide)
within the last 30 yearscaused<span> by burning fossil fuels has been identified as
the major </span>reason<span> for
the change of temperature in the atmosphere (click the following link for a
summary and graphs about the </span>cause<span> and
effects of </span>global warming).
The correct answer between all
the choices given is the last choice or letter D. I am hoping that this answer
has satisfied your query and it will be able to help you in your endeavor, and
if you would like, feel free to ask another question.
A wave is a disturbance that moves along a medium from one end to the other. If one watches an ocean wave moving along the medium (the ocean water), one can observe that the crest of the wave is moving from one location to another over a given interval of time. The crest is observed to cover distance. The speed of an object refers to how fast an object is moving and is usually expressed as the distance traveled per time of travel. In the case of a wave, the speed is the distance traveled by a given point on the wave (such as a crest) in a given interval of time. In equation form,
Answer:
T = 0.0088 m²/s
Explanation:
given,
initial piezometric elevation = 12.5 m
thickness of aquifer = 14 m
discharge = 28.24 L/s = 0.02824 m³/s
we know

k = 0.629 mm/sec
Transmissibilty
T = k × H
T = 0.629 × 14 × 10⁻³
T = 0.0088 m²/s