Answer:
ΔP = (640 N/cm^2)
Explanation:
Given:-
- The volume increase, ΔV/V0 = 4 ✕ 10^-3
- The Bulk Modulus, B = 1.6*10^9 N/m^2
Find:-
Calculate the force exerted by the moonshine per square centimeter
Solution:-
- The bulk modulus B of a material is dependent on change in pressure or Force per unit area and change in volume by the following relationship.
B = ΔP / [(ΔV/V)]
- Now rearrange the above relation and solve for ΔP or force per unit area.
ΔP = B* [(ΔV/V)]
- Plug in the values:
ΔP = (1.6*10^9)*(4 ✕ 10^-3)
ΔP = 6400000 N/m^2
- For unit conversion from N/m^2 to N/cm^2 we have:
ΔP = (6400000 N/m^2) cm^2 / (100)^2 m^2
ΔP = (640 N/cm^2)
The frictional force is given by F = μmg
<span>where μ is the coeficient of friction. </span>
<span>Work done by frictional force = Fd = μmgd </span>
<span>Kinetic energy "lost" = 1/2 mv² </span>
<span>Fd = μmgd = 1/2 mv² </span>
<span>The m's cancel μgd = v² / 2 </span>
<span>d = v² / 2μg </span>
<span>d = 8² / 2(0.41)(9.8) </span>
<span>d = 32 / (0.41)(9.8) </span>
<span>d = 7.96 </span>
<span>Player slides 8 m . </span>
<span>Note. In your other example μ = 0.46 and v = 4 m/s </span>
<span>d = v² / 2μg </span>
<span>= 4² / 2(0.46)(9.8) </span>
<span>= 8 / (0.46)(9.8) </span>
<span>= 1.77 or 1.8 m.
</span>
Hope i Helped :D
The answer is D, the amount of energy stays the same.