1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
3 years ago
11

Terry earns $6.50 per hour babysitting.

Mathematics
1 answer:
Ede4ka [16]3 years ago
3 0
It's c because$6.50h = m h = 4.25
You might be interested in
Help please!!! i need it by 2:00 today. i will give brainliest
MA_775_DIABLO [31]

Answer:

Below in bold.

Step-by-step explanation:

x-intercepts (-3,0) and  (6, 0)

y-intercept (0, -5)

Axis of symmetry:

(-3 + 6)  / 2 = 1.5

x = 1.5.

Domain = all real x.

Range is f(x) ≥  -6.

Graph is positive for x < -3 and x > 6.

Negative for  -3 < x < 6.

Increasing for x > 1.5 and decreasing for x < 1.5.

4 0
3 years ago
Use the Divergence Theorem to evaluate S F · dS, where F(x, y, z) = z2xi + y3 3 + sin z j + (x2z + y2)k and S is the top half of
GenaCL600 [577]

Close off the hemisphere S by attaching to it the disk D of radius 3 centered at the origin in the plane z=0. By the divergence theorem, we have

\displaystyle\iint_{S\cup D}\vec F(x,y,z)\cdot\mathrm d\vec S=\iiint_R\mathrm{div}\vec F(x,y,z)\,\mathrm dV

where R is the interior of the joined surfaces S\cup D.

Compute the divergence of \vec F:

\mathrm{div}\vec F(x,y,z)=\dfrac{\partial(xz^2)}{\partial x}+\dfrac{\partial\left(\frac{y^3}3+\sin z\right)}{\partial y}+\dfrac{\partial(x^2z+y^2)}{\partial k}=z^2+y^2+x^2

Compute the integral of the divergence over R. Easily done by converting to cylindrical or spherical coordinates. I'll do the latter:

\begin{cases}x(\rho,\theta,\varphi)=\rho\cos\theta\sin\varphi\\y(\rho,\theta,\varphi)=\rho\sin\theta\sin\varphi\\z(\rho,\theta,\varphi)=\rho\cos\varphi\end{cases}\implies\begin{cases}x^2+y^2+z^2=\rho^2\\\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi\end{cases}

So the volume integral is

\displaystyle\iiint_Rx^2+y^2+z^2\,\mathrm dV=\int_0^{\pi/2}\int_0^{2\pi}\int_0^3\rho^4\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=\frac{486\pi}5

From this we need to subtract the contribution of

\displaystyle\iint_D\vec F(x,y,z)\cdot\mathrm d\vec S

that is, the integral of \vec F over the disk, oriented downward. Since z=0 in D, we have

\vec F(x,y,0)=\dfrac{y^3}3\,\vec\jmath+y^2\,\vec k

Parameterize D by

\vec r(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath

where 0\le u\le 3 and 0\le v\le2\pi. Take the normal vector to be

\dfrac{\partial\vec r}{\partial v}\times\dfrac{\partial\vec r}{\partial u}=-u\,\vec k

Then taking the dot product of \vec F with the normal vector gives

\vec F(x(u,v),y(u,v),0)\cdot(-u\,\vec k)=-y(u,v)^2u=-u^3\sin^2v

So the contribution of integrating \vec F over D is

\displaystyle\int_0^{2\pi}\int_0^3-u^3\sin^2v\,\mathrm du\,\mathrm dv=-\frac{81\pi}4

and the value of the integral we want is

(integral of divergence of <em>F</em>) - (integral over <em>D</em>) = integral over <em>S</em>

==>  486π/5 - (-81π/4) = 2349π/20

5 0
3 years ago
The length of a rectangle is x times the square root of 100. The width is one-half y more than three-halves x. Given that the ar
dimulka [17.4K]

Answer:

15x^2+5xy-125=0

Step-by-step explanation:

We are give the following in the question:

Dimensions of rectangle:

Length , l =

l = x\sqrt{100} = 10x

Width of rectangle, w =

w = \dfrac{y}{2} +\dfrac{3x}{2}

Area of rectangle = 125 square cm.

Area of rectangle =

A =l\times w

Putting values, we get,

125 = 10x\times (\dfrac{y}{2}+\dfrac{3x}{2})\\\\125 = 5xy+15x^2\\15x^2+5xy-125=0

is the required equation.

7 0
3 years ago
Read 2 more answers
Find the antiderivative of the function: <br> (x^4+2x^2)/x^3
dangina [55]
Set the function up in integral form and evaluate to find the integral.
F(x)=F(x)=12x2−ln(|x|)−1x2+C
3 0
4 years ago
Read 2 more answers
I need a answer AS SOON AS POSSIBLE.. thank you :}
nadezda [96]

Answer:

1. c

2. b

3. c

4. a

5. b

6. c

7. c

Step-by-step explanation:

1. to check the congrency normally distance formula is used. if the distances/ length are equal we say that sides are congurent.

2. if the slope of two lines are equal then both the lines are parallel. if the product of the slopes of two lines equal to one then lines will be perpendicular.

3. diagonals bisect or not can be checked by using midpoint formula.

4. equilateral triangle if the distance of each side is equal so, distance formula can be used.

5 0
3 years ago
Read 2 more answers
Other questions:
  • There are 6 whole numbers in a set of numbers. The least number is 8, and the greatest number is 14, The mean, the median, and t
    9·1 answer
  • PLEASEEEEEEEEE HELP I AM FAILING :(((
    13·2 answers
  • In a wood there are 420 silver birch trees 160 oak trees and 300 wild cherry trees what percentage is the oak trees give answer
    15·1 answer
  • Which value satisfies the inequality -2x + 8 + 5x &gt; 2x + 1? A) -15 B) -10 C) -7 D) -5
    9·2 answers
  • Find the length of a segment with endpoints Y(2, 8) and Z(- 2, 5) .
    7·1 answer
  • What is the missing value in the table of equivalent ratios? 1 12 2 24 3 36 4 48 5 ?
    14·1 answer
  • Given Q'R'S'T' is a dilation of QRST, find the scale factor of dilation.
    14·1 answer
  • I need help in this question
    8·1 answer
  • Jori is 2 years older than Sage but 4 years younger than Victoria. Sage is 3 years less than a score. Sage is 17. In how many ye
    15·2 answers
  • Sin⁻¹(-<img src="https://tex.z-dn.net/?f=-%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D" id="TexFormula1" title="-\frac{\sqrt{3} }{2}" a
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!