Answer:

Explanation:
We are given that







We have to find the exit temperature.
By steady energy flow equation



Substitute the values




Kelvin is a base unit of temperature
scale from SI that defines as zero degree Kelvin (absolute zero). The absolute
zero is a hypothetical statement that all molecular movement stops because
there is no transient of energy for the molecules to move. When converting
temperature in degree Celsius to Kelvin, add 273. You are given 600K and you
are asked to find it in degrees Celsius.
T(K) = T(C) + 273
600 K = T(C) + 273
T(C) = 600 – 273
T(C) = 327 °C
<span>The answer is letter B.</span>
Answer:
The answer to the question is
The roller coaster will reach point B with a speed of 14.72 m/s
Explanation:
Considering both kinetic energy KE = 1/2×m×v² and potential energy PE = m×g×h
Where m = mass
g = acceleration due to gravity = 9.81 m/s²
h = starting height of the roller coaster
we have the given variables
h₁ = 36 m,
h₂ = 13 m,
h₃ = 30 m
v₁ = 1.00 m/s
Total energy at point 1 = 0.5·m·v₁² + m·g·h₁
= 0.5 m×1² + m×9.81×36
=353.66·m
Total energy at point 2 = 0.5·m·v₂² + m·g·h₂
= 0.5×m×v₂² + 9.81 × 13 × m = 0.5·m·v₂² + 127.53·m
The total energy at 1 and 2 are not equal due to the frictional force which must be considered
Total energy at point 2 = Total energy at point 1 + work done against friction
Friction work = F×d×cosθ = (
× mg)×60×cos 180 = -117.72m
0.5·m·v₂² + 127.53·m = 353.66·m -117.72m
0.5·m·v₂² = 108.41×m
v₂² = 216.82
v₂ = 14.72 m/s
The roller coaster will reach point B with a speed of 14.72 m/s
Density = Mass/Volume
So, given mass = 20 g and volume = 40 cm^3
By substituting in above equation, Density = 20/40 = 0.5 g/cm^3
Hope it helps.
Answer:2.67kgm/s cube
Explanation: density = mass ÷ volume = 400 ÷ 150