<u>Answer:</u> 1.0 kilograms.
<u>Explanation:</u>
One kilogram is equal to a thousand grams.
Supposing x to be the number of kilograms equal to one thousand and eight grams, we can write it as:
1 kg = 1000 grams
x kg = 1008 grams
To solve for x, we can simply divide 1008 grams by 1000 thousand grams to get the answer.
x = 1008 / 1000
x = 1.008
Rounding this value to the nearest tenth, it will become 1.0 kilograms.
Answer: The equilibrium constant for the overall reaction is 
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios.
a) 
![K_a=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
b) 
![K_b=\frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
For overall reaction on adding a and b we get c
c) 
![K_c=\frac{[PCl_5]}{[Cl_2]^\frac{5}{2}}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5E%5Cfrac%7B5%7D%7B2%7D%7D)
![K_c=K_a\times K_b=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}\times \frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_c%3DK_a%5Ctimes%20K_b%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5Ctimes%20%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
The equilibrium constant for the overall reaction is 
Mostly and for what I would say is A
Answer:
The mass of an object is 0.6122 Kg
Explanation:
Given:
Acceleration = 9.8 m/s
Force = 58.8 N
To Find:
Mass of an object = ?
Solution:
We know that according to newtons 2nd law
Force is the product of the mass and acceleration
F= ma
where
F = Force
m = mass
a = Acceleration
Substituting the values,
58.8 = m X 9.8

m = 0.6122 kg