Answer:
Volume of HCl require = 6 mL
Explanation:
Given data:
Volume of HCl require = ?
Molarity of HCl solution = 1.60 M
Volume of NaOH = 48.0 mL
Molarity of NaOH = 0.200 M
Solution:
Formula:
M₁V₁ = M₂V₂
By putting values,
1.60 M×V₁ = 0.200 M×48.0 mL
V₁ = 0.200 M×48.0 mL/1.60 M
V₁ = 9.6 M .mL /1.60 M
V₁ = 6 mL
Answer:
138 mg
Explanation:
A company is testing drinking water and wants to ensure that Ca content is below 155 ppm (= 155 mg/kg), that is, <em>155 milligrams of calcium per kilogram of drinking water</em>. We need to find the maximum amount of calcium in 890 g of drinking water.
Step 1: Convert the mass of drinking water to kilograms.
We will use the relation 1 kg = 1000 g.

Step 2: Calculate the maximum amount of calcium in 0.890 kg of drinking water

The answer is 6 because the number of chlorine is 2 so if you have 6 moles of chlorine the answer is 6
The molarity of a solution equals to the mole number of the solute/the volume of the solution. For NH4Br, we know that the mole mass is 98. So the molarity is (14/98) mol /0.15 L=0.95 mol/L.
Answer:
Mass, m = 1.51 grams
Explanation:
It is given that,
The circumference of Aluminium cylinder, C = 13 mm = 1.3 cm
Length of the cylinder, h = 4.2 cm
We know that the density of the Aluminium is 2.7 g/cm³
Circumference, C = 2πr

Density is equal to mass per unit volume.

m is mass of the cylinder
V is the volume of the cylinder

So,

So, the mass of the cylinder is 1.51 grams.