Answer:
The rate law for second order unimolecular irreversible reaction is
![\frac{1}{[A]} = k.t + \frac{1}{[A]_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%20k.t%20%2B%20%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%20%7D)
Explanation:
A second order unimolecular irreversible reaction is
2A → B
Thus the rate of the reaction is
![v = -\frac{1}{2}.\frac{d[A]}{dt} = k.[A]^{2}](https://tex.z-dn.net/?f=v%20%3D%20-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3D%20k.%5BA%5D%5E%7B2%7D)
rearranging the ecuation
![-\frac{1}{2}.\frac{k}{dt} = \frac{[A]^{2}}{d[A]}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bk%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5BA%5D%5E%7B2%7D%7D%7Bd%5BA%5D%7D)
Integrating between times 0 to <em>t </em>and between the concentrations of
to <em>[A].</em>
![\int\limits^0_t -\frac{1}{2}.\frac{k}{dt} =\int\limits^A_{0} _A\frac{[A]^{2}}{d[A]}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E0_t%20-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bk%7D%7Bdt%7D%20%3D%5Cint%5Climits%5EA_%7B0%7D%20_A%5Cfrac%7B%5BA%5D%5E%7B2%7D%7D%7Bd%5BA%5D%7D)
Solving the integral
![\frac{1}{[A]} = k.t + \frac{1}{[A]_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%20k.t%20%2B%20%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%20%7D)
Answer:
1) Maximun ammount of nitrogen gas: 
2) Limiting reagent: 
3) Ammount of excess reagent: 
Explanation:
<u>The reaction </u>

Moles of nitrogen monoxide
Molecular weight: 


Moles of hydrogen
Molecular weight: 


Mol rate of H2 and NO is 1:1 => hydrogen gas is in excess
1) <u>Maximun ammount of nitrogen gas</u> => when all NO reacted


2) <u>Limiting reagent</u>:
3) <u>Ammount of excess reagent</u>:


Answer:
54
Explanation:
Given symbol of the element:
I⁻
Number of electrons found in an ion with the symbol:
This is a iodine ion:
For an atom of iodine:
Electrons = 53
Protons = 53
Neutrons = 74
An ion of iodine is one that has lost or gained electrons.
For this one, we have a negatively charged ion which implies that the number of electrons is 1 more than that of the protons.
So, number of electrons = 53 + 1 = 54
The number of electrons in this ion is 54