For this we want to use Boyle's Law. Boyle’s law states that the pressure and volume of a fixed quantity of a gas are inversely proportional under constant temperature conditions. The formula for this is P1V1 = P2V2. We want to solve this out so it equals V2 (Volume 2). So P1V1 / P2 = V2. Then plug in your values for the variables. So (101)(4.2) / 235 = V2; so 424.2 / 235 = V2. The final volume equals 1.81. I hope this helps, If not I am very sorry.
According to given condition there is no height(m) given from roof of building to the ground, there height given 18 m at a point above the ground. So, h=18m , mass=3kg , g=9.8m/s2 P.E=mgh P.E=(3)(9.8)(18) P.E=529J
Answer:
the potential energy of this body is 245 J.
Explanation:
Given;
mass of the body, m = 250 g = 0.25 kg
height from which the body was dropped, h = 100 m
acceleration due to gravity, g = 9.8 m/s²
The potential energy of this body is calculated as;
P.E = mgh
substitute the given values and solve for the potential energy of this body;
P.E = 0.25 x 9.8 x 100
P.E = 245 J.
Therefore, the potential energy of this body is 245 J.
It takes him
t = 16 miles / 156 mph = 0.1 hours
1. A broom swishing against the floor
2. a bee buzzing
3. a car engine
hope this helps!