Answer:
86.4 m horizontal from landing spot
Explanation:
Find out how long before the ball hits the ground
vertical speed of ball = -2 m/s gravity = - 9.81 m/s^2
find time to hit ground from 100 m
( height will be<u> zero</u> when it hits the ground)
<u>0 </u>= 100 - 2 t - 1/2 ( 9.81) t^2
use Quadratic Formula to find t = 4.32 seconds
horizontal speed of ball = 20 m/s
in 4.32 seconds it will travel horizontally 20 m/s * 4.32 s = 86.4 m
Explanation:
Whenever an object is at its highest point, the velocity and acceleration of the object is zero.
The net force of the object is equal to the force applied minus the force of friction.
Fnet = ma = F - Ff
12 kg x 0.2 m/s² = 15 N - Ff
The value of Ff is 12.6 N. This force is equal to the product of the normal force which is equal to the weight in horizontal surface and the coefficient of friction.
Ff = 12.6 N = k(12 kg)(9.81 m/s²)
The value of k is equal to 0.107.
The period of the wave would be halved