1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
3 years ago
13

A 0.40 kg ball is suspended from a spring with spring constant 12 n/m . part a if the ball is pulled down 0.20 m from the equili

brium position and released, what is its maximum speed while it oscillates?
Physics
1 answer:
PolarNik [594]3 years ago
3 0
The total mechanical energy of the system at any time t is the sum of the kinetic energy of motion of the ball and the elastic potential energy stored in the spring:
E=K+U= \frac{1}{2}mv^2+ \frac{1}{2}kx^2
where m is the mass of the ball, v its speed, k the spring constant and x the displacement of the spring with respect its rest position.

Since it is a harmonic motion, kinetic energy is continuously converted into elastic potential energy and vice-versa.

When the spring is at its maximum displacement, the elastic potential energy is maximum (because the displacement x is maximum) while the kinetic energy is zero (because the velocity of the ball is zero), so in this situation we have:
E=U_{max}= \frac{1}{2}k(x_{max})^2

Instead, when the spring crosses its rest position, the elastic potential energy is zero (because x=0) and therefore the kinetic energy is at maximum (and so, the ball is at its maximum speed):
E=K_{max}= \frac{1}{2}m(v_{max})^2

Since the total energy E is always conserved, the maximum elastic potential energy should be equal to the maximum kinetic energy, and so we can find the value of the maximum speed of the ball:
U_{max}=K_{max}
\frac{1}{2}k(x_{max})^2 =  \frac{1}{2}m(v_{max})^2
v_{max}= \sqrt{ \frac{k x_{max}^2}{m} }= \sqrt{ \frac{(12 N/m)(0.20 m)^2}{0.4 kg} }=1.1 m/s
You might be interested in
A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surfac
frutty [35]

Answer:

Velocity=1.1m/s

Amplitude=0.35m

Explanation:

Given:

time 't' = 2.9s

wavelength 'λ'= 5.5m

distance 'd'=0.7m

The time period 't' is the time b/w two successive waves. Therefore, the time it takes from the boat to travel  from its highest point to its lowest is a half period.

So, T = 2 x 2.9 => 5.8 s

As we know that frequency is the reciprocal of time period, we have

f= 1/T = 1/5.8 =>0.2 Hz

In order to find how fast are the waves traveling, the velocity is given by

Velocity = f λ

V= 0.2 x 5.5 =>1.1m/s

The distance between the boat's highest point to its lowest point is double the amplitude.

Therefore , we can write

Amplitude 'A'= d/2 =>0.7/2 =>0.35m

8 0
3 years ago
A particle of charge 3.53×10 ​−8 ​​ C experiences a force of magnitude 6.03×10 ​−6 ​​ N when it is placed in a particular point
Cloud [144]
<h2>Electric field at the location of the charge is 169.97 N/C</h2>

Explanation:

Electric field is the ratio of force and charge.

Force, F = 6 x 10⁻⁶ N

Charge, q = 3.53 x 10⁻⁸ C

We have           

       E=\frac{F}{q}\\\\E=\frac{6\times 10^{-6}}{3.53\times 10^{-8}}\\\\E=169.97N/C

Electric field at the location of the charge is 169.97 N/C

6 0
3 years ago
Oceanic water particles mainly move in circles; is this movement greater on the ocean's surface or below the surface? Explain yo
goblinko [34]
I think that the oceanic water particles mainly move in circles greater in the oceans surface because of how big the waves can be and how wind and air impact the motion. The water particles move more on the surface because of the other factors that impact it such as people, wind, air, etc...
5 0
2 years ago
A piano string having a mass per unit length of 5.00 g/m is under a tension of 1350 N. Determine the speed of transverse waves i
padilas [110]

Answer:

The speed of transverse waves in this string is 519.61 m/s.

Explanation:

Given that,

Mass per unit length = 5.00 g/m

Tension = 1350 N

We need to calculate the speed of transverse waves in this string

Using formula of speed of the transverse waves

v=\sqrt{\dfrac{T}{\mu}}

Where, \mu = mass per unit length

T = tension

Put the value into the formula

v = \sqrt{\dfrac{1350}{5.00\times10^{-3}}}

v =519.61\ m/s

Hence, The speed of transverse waves in this string is 519.61 m/s.

6 0
3 years ago
What type of energy does the box have after it is done being pulled?
Ksivusya [100]
Assuming that the box is moving when it is being pulled, Work is done on the box.

So work is the Force times the distance

W=Fd

But what is work actually ? When something moves due to force over some change in distance, it have energy.

But where does this energy come from ? Does it magically appear ? The energy comes from the applied force onto the box.

So the energy have been transferred. And it’s like that throughout the universe

Now to save time, I’ll just tell you the answer: kinetic energy

:)
3 0
3 years ago
Other questions:
  • An ideal gas trapped inside a thermally isolated cylinder expands slowly by pushing back against a piston. The temperature of th
    11·1 answer
  • The primary of a step-up transformer is connected across the terminals of a standard wall socket, and resistor 1 with a resistan
    9·1 answer
  • When you put a book on a table the table pushes back. which newton law
    7·1 answer
  • 162 x [ 6 ( 7 x 4²) ]<br><br> I got 108,864, Is this correct?
    12·1 answer
  • Two motorcycles travel along a straight road heading due north. At t = 0 motorcycle 1 is at x = 50.0 m and moves with a constant
    13·1 answer
  • ~*~WILL GIVE BRAINLIST~*~
    5·1 answer
  • A block is initially at position x = 0 and in contact with an uncompressed spring of negligible mass. The block is pushed back a
    13·1 answer
  • On a distance vs time graph, what does the line of an object at constant<br>speed look like?​
    5·1 answer
  • I NEED HELP THIS QUESTION IS SO HARDDD!!
    11·2 answers
  • The potential energy for a mass on a spring is proportional to the square of which of these quantities?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!