1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitrij [34]
3 years ago
9

The dam cross section is an equilateral triangle, with a side length, L, of 50 m. Its width into the paper, b, is 100 m. The dam

material has a specific gravity, SG, of 3.1. You may assume that the dam is loosely attached to the ground at its base, though there is significant friction to keep it from sliding.Is the weight of the dam sufficient to prevent it from tipping around its lower right corner?
Engineering
1 answer:
lisabon 2012 [21]3 years ago
6 0

Answer:

Explanation:

In an equilateral trinagle the center of mass is at 1/3 of the height and horizontally centered.

We can consider that the weigth applies a torque of T = W*b/2 on the right corner, being W the weight and b the base of the triangle.

The weigth depends on the size and specific gravity.

W = 1/2 * b * h * L * SG

Then

Teq = 1/2 * b * h * L * SG * b / 2

Teq = 1/4 * b^2 * h * L * SG

The water would apply a torque of elements of pressure integrated over the area and multiplied by the height at which they are apllied:

T1 = \int\limits^h_0 {p(y) * sin(30) * L * (h-y)} \, dy

The term sin(30) is because of the slope of the wall

The pressure of water is:

p(y) = SGw * (h - y)

Then:

T1 = \int\limits^h_0 {SGw * (h-y) * sin(30) * L * (h-y)} \, dy

T1 = \int\limits^h_0 {SGw * sin(30) * L * (h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {h^2 - 2*h*y + y^2} \, dy

T1 = SGw * sin(30) * L * (h^2*y - h*y^2 + 1/3*y^3)(evaluated between 0 and h)

T1 = SGw * sin(30) * L * (h^2*h - h*h^2 + 1/3*h^3)

T1 = SGw * sin(30) * L * (h^3 - h^3 + 1/3*h^3)

T1 = 1/3 * SGw * sin(30) * L * h^3

To remain stable the equilibrant torque (Teq) must be of larger magnitude than the water pressure torque (T1)

1/4 * b^2 * h * L * SG > 1/3 * SGw * sin(30) * L * h^3

In an equilateral triangle h = b * cos(30)

1/4 * b^3 * cos(30) * L * SG  > 1/3 * SGw * sin(30) * L * b^3 * (cos(30))^3

SG > SGw * 4/3* sin(30) * (cos(30))^2

SG > 1/2 * SGw

For the dam to hold, it should have a specific gravity of at leas half the specific gravity of water.

This is avergae specific gravity, including holes.

You might be interested in
(d) Arches NP is known for its spectacular arches that develop in the jointed areas of the park. Placemark Problem 2d flies you
Whitepunk [10]

Answer:

☐ NE-SW

Explanation:

Based on the description, the rock direction is North East - South West (NE-SW). Rocks generally can expand or compress depending on the type and magnitude of stress applied on the rocks. However, if the applied stress is sufficiently high, cracks and fractures will be created on the rock and it can ultimately lead to the formation of particles.

8 0
3 years ago
A 2-m3insulated rigid tank contains 3.2 kg of carbon dioxide at 120 kPa.Paddle-wheel work is done on the system until the pressu
AleksandrR [38]

Answer:

The change in entropy is found to be 0.85244 KJ/k

Explanation:

In order to solve this question, we first need to find the ration of temperature for both state 1 and state 2. For that, we can use Charles' law. Because the volume of the tank is constant.

P1/T1 = P2/T2

T2/T1 = P2/P1

T2/T1 = 180 KPa/120KPa

T2/T1 = 1.5

Now, the change in entropy is given as:

ΔS = m(s2 - s1)

where,

s2 = Cv ln(T2/T1)

s1 = R ln(V2/V1)

ΔS = change in entropy

m = mass of CO2 = 3.2 kg

Therefore,

ΔS = m[Cv ln(T2/T1) - R ln(V2/V1)]

Since, V1 = V2, therefore,

ΔS = mCv ln(T2/T1)

Cv at 300 k for carbondioxide is 0.657 KJ/Kg.K

Therefore,

ΔS = (3.2 kg)(0.657 KJ/kg.k) ln(1.5)

<u>ΔS = 0.85244 KJ/k</u>

3 0
3 years ago
A master precision square is used to validate the
kumpel [21]

Answer:

me you same I didn't understand good luck

4 0
2 years ago
In a major human artery with an internal diameter of 5mm, the flow of blood, averaged over the cardiac cycle is 5cm3·s−1. The ar
antiseptic1488 [7]

9514 1404 393

Answer:

  see attached

Explanation:

Assuming flow is uniform across the cross section of the artery, the mass flow rate is the product of the volumetric flow rate and the density.

  (5 cm³/s)(1.06 g/cm³) = 5.3 g/s

If we assume the blood splits evenly at the bifurcation, then the downstream mass flow rate in each artery is half that:

  (5.3 g/s)/2 = 2.65 g/s

__

The average velocity will be the ratio of volumetric flow rate to area. Upstream, that is ...

  (5 cm³/s)/(π(0.25 cm)²) ≈ 25.5 cm/s

Downstream, we have half the volumetric flow and a smaller area.

  (2.5 cm³/s)/(π(0.15 cm)²) ≈ 35.4 cm/s

7 0
3 years ago
The contact angle between the mercury surface and capillary tube wall is______ A) Less than 90 B) Equal to 90 C) Greater than 90
MakcuM [25]

Answer:

The Answer to the question is :

Explanation:

The contact angle between the mercury surface and capillary tube wall is Greater than 90.

If the surface of the solid is hydrophobic, the contact angle will be greater than 90 °. On very hydrophobic surfaces the angle can be greater than 150º and even close to 180º.

8 0
3 years ago
Other questions:
  • A 10-kg block A is released from rest 2 m above the 5-kg plate P, which can slide freely along the smooth vertical guides BC and
    6·1 answer
  • Which of these is the BEST description of
    9·1 answer
  • What gadgets are charge coupled devices used in?
    11·1 answer
  • PLEASE HURRY!!!
    6·2 answers
  • Proper ventilation is required when welding, so that you don't ____________.
    14·2 answers
  • Okay bro let’s go man yes yes
    9·2 answers
  • What phenomenon allows water to reach the top of a building?
    8·1 answer
  • a coiled spring is stretched 31.50 cm by a 2.00N weight. How far is it stretched by a 10.00 N weight?
    6·1 answer
  • For some metal alloy, the following engineering stresses produce the corresponding engineering plastic strains prior to necking.
    8·1 answer
  • ) A certain polymer is used for evacuation systems for aircraft. It is important that the polymer be resistant to the aging proc
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!