The block that has a higher temperature describes the thermal energy of these blocks. Thermal energy is a measure of internal energy - therefore, the block with the higher temperature has more internal energy than the block with the lower temperature, meaning it's thermal energy is greater.
Answer:
137200000 watts or 137200 kilowatts
Explanation:
The formula for power is P= dhrg
Where P = Power in watts
d = density of water (1000 kg/m^3)
h = height in meters
r = flow rate in cubic meters per second,
g = acceleration due to gravity of 9.8 m/s^2,
Plugging in the known values,
we get
P = 1000 kg/m^3 * 80 m * 175 m^3/s * 9.8 m/s^2
P = 80000 kg/m^2 * 175 m^3/s * 9.8 m/s^2
P = 14000000 kg m/s * 9.8 m/s^2
P = 137200000 kg m^2/s^3
P = 137200000 watts or 137200 kilowatts
The above figure assumes 100% efficiency which is impossible. A good efficiency would be 90% so the actual power available would be close to 0.90 * 137200 = 123480 kilowatts
Answer:
(1) it is transparent so it makes the reading difficult. (2) it is volatile. (3) it is a poor conductor of heat. (4) it has a higher specific heat capacity, so it absorbs more heat from the body with which it is kept in contact. (5) Water cannot be used in thermometer because of its higher freezing point and lower boiling point than other liquids . If water is used in a thermometer , it will start phase change at 0oC and 100oC and will not measure temperature , out of this range .
PLEASE READ CAREFULLY AND PLEASE MARK AS BRAINLIEST :)
A. the medium through which the light travels changes.
Explanation:
Light waves will continue to travel in a straight line in all directions from their source unless the medium through which the light travels changes.
A change in medium causes light to exhibit different properties. Also, when light hits an obstacle, they can be diffracted.
- The way light travels on crossing a boundary differs.
- At the boundary between two medium, light can either be reflected back or refracted when they cross the medium
- This will cause the light rays to bend towards or away from the normal depending on the properties of the medium.
Learn more:
Refraction brainly.com/question/12370040
#learnwithBrainly